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1. Introduction

The “New Monetary Policy Framework” of the Swiss National Bank, like that 
of most leading central banks, is frequently and appropriately studied by means 
of policy analysis conducted in the context of “New Keynesian” or “New Neo-
classical Synthesis” models that presume rational expectations (RE) and utilize 
a policy rule for adjustment, in response to macroeconomic developments, of a 
specified short-term interest rate (e.g., the Swiss libor rate). This type of frame-
work has become standard among monetary policy analysts, whether located in 
central banks or in academia, over the past 15 years.1

Throughout that period considerable attention has been given to issues relat-
ing to the possibility of “indeterminacy”, meaning in this context a multiplicity 
of dynamically stable solutions. The standard approach to these issues has been 
to look for policy rules that yield, in the model adopted, “determinacy” in the 
sense of a unique stable RE solution – an approach developed in detail in the 
justly-influential treatise by Woodford (2003). There are several ways, how-
ever, in which this approach is arguably unsatisfactory. Cochrane (2007), for 
example, contends that a finding of determinacy – i.e., a single stable solution – 
is not sufficient to imply a particular inflation outcome, for there exists in most 
cases a solution with explosive inflation that is not eliminated by the failure of 
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2 For an argument that this solution is, however, ruled out by the requirement of least-squares 
learnability, see McCallum (2009c).

3 This weakness is illustrated by an example in which there is a determinate solution that dif-
fers sharply in dynamic behavior from that implied by the (block recursive) model when con-
sidered on a sector-by-sector basis.

any transversality condition.2 From a different perspective, McCallum (2003) 
argues that determinacy is not necessary for a unique solution to be implied 
because learnability [as developed in Evans and Honkapohja (2001)] is nec-
essary for a solution to be plausible. In addition, Cho and McCallum (2009) 
describe “another weakness” of determinacy as a selection criterion.3 Recently, in 
McCallum (2009a), I have argued for a different criterion for a RE solution to be 
plausible, namely, that it is fully consistent with the dynamic causality specification 
implied by the analyst’s chosen structural model. In the present paper, I begin by 
summarizing this last argument. Then I recognize a weakness in the latter and 
put forth a proposed RE “solution refinement” that seems highly attractive. It is 
then shown that this refinement is consistent with the causality argument and 
adds support to a solution concept that was proposed over 25 years ago.

2. Causality

Here I begin by suggesting that there is an important sense in which indeter-
minate RE solutions reflect not a multiplicity of solutions for a single model, 
but instead a multiplicity of models each with a single solution. Specifically, it 
will be suggested that if attention is paid to the “direction of causality” of inter-
temporal relationships – expectational vs. inertial – then one of the RE solu-
tions stands out uniquely as a candidate for equilibrium. In addition, structural 
models – e.g., ones based on optimizing analysis – typically require such atten-
tion in their specification. In developing this argument, I will add only one new 
ingredient to those standard in the RE literature; it constitutes an assumption 
of continuity of solution coefficients with respect to structural parameters (in 
the vicinity of zero).

The argument starts with the assertion that there can be little if anything more 
fundamental and critical, in dynamic economic modelling, than the specification 
and interpretation of the direction of causality in intertemporal relationships. For 
example, the univariate “model”

 1 0t ty yα +− =  (1)
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4 It should be clear that we are referring to “causality” in the model-specification sense of 
Simon (1953), not to Granger causality. For a useful discussion, see Zellner (1979), espe-
cially pp. 21–25.

5 In the first, the causality is not unidirectional; instead yt and expectations about yt+1 are deter-
mined jointly. In the second, however, yt−1 is not influenced by yt – it is predetermined.

6 If the first interpretation above is put forth for model (1), then there is no place for concern 
regarding dynamic stability. Observation of explosive tendencies in an empirical study of yt 
behavior would, accordingly, tend to discredit a hypothesis to the effect that the model with 
the first interpretation is appropriate for the data-generating mechanism at hand.

can be interpreted as representing a system in which the variable yt is determined 
by agents’ expectations in t of yt+1 or, alternatively, as representing a system in 
which yt+1 is directly influenced by the previous period’s realization of yt (or, 
equivalently, that yt is influenced by yt−1). These two interpretations or speci-
fications represent drastically different models of yt determination.4 The first 
features a crucial role for agents’ current expectations of future values (with no 
influence from the past) whereas the latter assigns an impact to past values via, 
e.g., adjustment costs, and has no role for expectations (possibly because of an 
extreme discounting of the future).5 In terms of dynamic properties, to continue 
with the contrast, in the former case the system will be dynamically stable for 
any finite value of the parameter a, while the latter case features dynamic stabil-
ity only if |a| > 1. Also, simulations in stochastic versions with rational expecta-
tions are conducted quite differently in the two cases.

Accordingly, specifying the postulated direction of causation for all relations is 
an essential part of a model’s specification, if that model is intended to represent 
the way in which data is generated by some economic system in which agents’ 
expectations are potentially important.6 Of course it is the case that many – per-
haps most – models include both expectational and inertial components. (These 
are the terms that will be used henceforth to refer to the two types of influences.) 
In such cases, the considerations just described remain fundamental; among 
other things, it is essential not to confuse parameter values relating to expec-
tational components with those descriptive of adjustment-cost or other inertial 
aspects of the modeled mechanism. Any model that purports to be structural 
must surely be clear about all such distinctions. Indeed, all relevant causal speci-
fications will be generated automatically in any model that is based on explicit 
analysis of agents’ optimization problems plus market clearing (as, e.g., in so-
called DSGE models).

How is causality specification accomplished, operationally, in the example 
under discussion, 1 0?t ty yα +− =  The answer is the same whether or not there 
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7 If yt is taken to be predetermined in (1) it might be natural to write the relation as 
(1/a)yt − yt+1 = 0 or, equivalently, yt = (1/a)yt−1.

8 The importance and prevalence of such issues in monetary economics is stressed in McCal-
lum (2003).

9 It is possible, of course, to exclude one influence or the other by having either a or c equal to 
zero.

is a stochastic component. The direction of causation is determined by specifying 
whether yt is or is not predetermined in relation (1) – i.e., unaffected by develop-
ments in the period to which the relationship pertains.7 Indeed, it will be shown 
in what follows that multiple solutions in linear rational expectations (RE) models 
invariably reflect multiple specifications regarding which variables are predeter-
mined and which are not, and these specifications are in fact the operational 
counterpart of causality specifications. As the examples below will for simplicity 
exclude exogenous variables, the predetermined variables will in these cases also 
be the system’s state variables.

The contention of the present argument is that recognition of the importance 
of causality specification, in the sense just described – i.e., of distinguishing 
expectational influences from inertial influences via adjustment costs, lags, etc. – 
will, with the adoption of a simple and natural continuity property, eliminate 
issues relating to possible “indeterminacy” of the multiple-stable-solution type 
in linear rational expectations (RE) models.8 Specifically, there is in each model 
only one RE solution, which may be dynamically stable or unstable, that accu-
rately reflects a given causality specification – that is, reflects a given specifica-
tion of which variables in the system are predetermined. This solution might be 
regarded as representing a proposed equilibrium refinement; that position will 
be developed in Section 4. The continuity property that will be used in both 
arguments is that polynomials and eigenvalues relating to solution parameters 
are continuous functions of the model’s structural parameters. Analysis involv-
ing such properties has a long and honorable history in economics, physics, and 
engineering. Some analysts may not be attracted by it, but many, I believe, will 
find it both attractive in principle and useful in practice.

3. Basic Univariate Model

Let us begin the discussion with a univariate linear model that features inclusion 
of both expectational and inertial influences, assuming of course that the analyst 
specifies which is which.9 That is, in the model
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10 Then, a fully inertial specification with no significant role for expectations, i.e., a = 0, has as 
its solution yt = γ + cyt−1, not yt = (1/a)(yt−1 − cyt−2).

11 It reflects a solution that Blanchard (1979, p. 115) describes as “… a weighted average of 
two special solutions, a backward solution … and a forward solution …”. Our argument is that 
careful attention to the model’s causality properties results in a unique determination of the 
weights assigned to these special solutions. The lag-operator approach of Sargent (1979) is 
similar to, but more complete than, Blanchard’s.

 1 1,t t t ty aE y cyγ + −= + +  (2)

inclusion of the Et operator before yt+1 indicates that the analyst has specified 
that a is the parameter that governs the magnitude of expectational influences 
of Etyt+1 on yt while c is the parameter governing inertial effects of yt−1 on yt.

10 
It is crucial to recognize that in this framework agents are depicted as looking 
into the future while taking proper account of both expectational and inertial 
effects.11 We could add exogenous variables, stochastic or deterministic, to this 
equation but doing so would have no significant influence on the argument. The 
only state variable is yt−1 (which is predetermined) so the fundamental (sunspot-
free) forward-looking linear solution is of the form

 0 1 1.t ty yφ φ −= +  (3)

Accordingly, 1 0 1 0 1 1( )t t tE y yφ φ φ φ+ −= + +  and simple undetermined-coefficient 
reasoning indicates that φ0 and φ1 must satisfy

 0 0 1 0a aφ γ φ φφ= + +  (4)

 2
1 1 .a cφ φ= +  (5)

For a given value of φ1, (4) determines φ0 uniquely but, obviously, (5) is satisfied 
by two values, which are

 ( )
1

1 1 4
2

ac
a

φ − − −
=  (6a)

 ( )
1

1 1 4
.

2
ac

a
φ + + −

=  (6b)



112 Bennett T. McCallum

12 Both numerator and denominator of (6a) approach zero as a → 0, but d([ 1 − 1 4ac− ] / da) → 2c 
while (d[2a] / da) = 2, so the expression in (6a) has a limiting value of c.

13 This can be verified by numerical examples. Note for reference below that selection of the 
solution φ1

(−) simultaneously implies that φ1 → 0 as c → 0 and that φ1 → c as a → 0, whereas 
the other solution has φ1

(+) → 1 / a as c → 0 and φ1
(+) → ∞ as a → 0.

We now ask, is there any connection between these two solutions and the correct 
identification of expectational and inertial components? Considering the special 
case in which c = 0, so the inertial component is absent, we see that the answer is 
arguably “yes.” For in that case, φ1

(−) = 0 whereas φ1
(+) = 1 / a. Thus the solution 

involving (6a) is appropriate whereas (6b) would suggest that causation is from 
yt−1 to yt rather than from Et  yt+1 to yt.

That position is not accepted, however, by numerous analysts who take the 
position that expectations may depend on additional information variables, ones 
not included in the set of state variables implied by the model’s specification. If, 
for example, yt−1 is such a variable and is included even when c = 0, then the con-
clusion that φ1 should equal zero when c = 0 will not be accepted. More gener-
ally, this position argues for the eligibility as state variables “anything that agents 
decide to base their expectations on”, including sunspot variables”, ones unre-
lated to the model at hand.
Let us instead consider, therefore, the situation in which a = 0, i.e., in which the 
importance of expectations in model (2) is nil. That is, we consider the contrast-
ing special case in which c is non-zero but a equals zero. Then from (6b) we see 
that as a → 0, we have φ1

(+) → ±∞. By contrast, l’Hospital’s rule shows that φ1
(−) 

approaches c.12 Thus we find that for this special case, as well as the one with 
c = 0, φ1

(−) provides the a-priori correct value while φ1
(+) implies a value that is 

incorrect in the sense of departing from the causality specification that has been 
built into the model. Furthermore, the two expressions for φ1 are continuous 
functions of the basic parameters a and c of the model’s structural relations. Thus 
for values of either c or a close to zero, the dynamic properties of the system, as 
determined by the value of φ1, will be close to those known to be relevant if φ1

(−) 
is adopted but not if φ1

(+) were chosen for φ1.
13 Accordingly, if we adopt the prin-

ciple that the model’s solution implies response functions that are continuous 
in the basic parameter values, we are justified in concluding that φ1

(−) provides 
the answer in general, i.e., it identifies the solution that correctly represents the 
causal structure implied by model (3), in which both expectational and inertial 
components are potentially present.
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14 This is not a very sensible model, but it is what is implied by the solution using (6b). That 
is not at all a weakness for our argument, which by contrast posits (6a) as the appropriate 
expression.

15 This solution might still fail to provide an equilibrium because of the failure of some transver-
sality condition or some informational feasibility condition such as least-squares learnability 
(as developed by extensively by Evans and Honkapohja (2001)).

In light of that contention, it is perhaps natural to ask, “to what causal dynamic 
specification does the solution φ1

(+) pertain?” The answer is reasonably straight-
forward. Suppose the analyst ignores the expectation operator Et in (2) and inter-
prets the equation as a purely inertial model, writing it (with γ = 0) as

 1 2(1/ ) ( / ) .t t ty a y c a y− −= −  (2')

Then for the special case with c = 0 he finds 1(1/ )t ty a y −=  as his solution, which 
is what he would find if he were using φ1

(+). Generalizing to the case with c ≠ 0, 
he might seek a solution to (2') that features only one state variable, i.e.,

 yt = ψyt−1. (3')

The latter would imply also that yt = ψ2yt−2, so substitution into (2') would imply 
that ψ must satisfy 2 (1/ ) ( / ),a c aψ ψ= −  which with a ≠ 0 has the same form 
as (5). Accordingly, we see that (2') is a second interpretation that gives rise to 
the quadratic equation (5). In fact, (2') is the relation that is associated with the 
root φ1

(+), not only in the special case c = 0, but also for cases with c close to zero, 
with a close to 0, and indeed in general. Clearly, the causal structure is entirely 
different from that implied by the root φ1

(−). The root φ1
(+) pertains to an inter-

pretation of model (2) as if it were model (2'), which has a different dynamic 
specification.

In sum, the solution based on expression (6b) for φ1 is the solution to a model 
in which agents at time t make decisions about yt on the basis of past values of 
yt−1 and yt−2, plus the constraint implied by (3'), with expectations of yt+1 playing 
no role.14 This is quite different from the model specified in (2), which depicts 
agents as choosing yt values partly on the basis of yt−1 (inertial influences) and also 
(potentially) on expectations regarding yt+1. From a structural point of view, these 
are two drastically different models. But once the analyst has decided which of 
the two models he is proposing, there is no ambiguity about its solution.15

Before moving on, we note that in the simple univariate model at hand the 
values φ1

(−) and φ1
(+) equal the eigenvalues of the dynamic system written in first-



114 Bennett T. McCallum

16 See, e.g., Horn and Johnson (1985, pp. 539–540).
17 The multivariate version of (8) corresponds to the complete set of solutions considered in Sims 

(2002) and Lubik and Schorfheide (2003). The latter authors apparently see it as desirable 
that Sims’ method “… does not require the researcher to separate the list of endogenous vari-
ables … into ‘jump’ and ‘predetermined’ variables” (2003, p. 276). The position of the present 
paper is basically just the opposite, assuming the desirability of having a structural model 
(which for Sims would perhaps not be the case).

order form as well as possible values of the solution coefficient φ1 in (6). The 
analogous equivalence does not prevail in multivariate models, but in the latter 
the system’s eigenvalues continue to govern and describe the model’s dynamic 
stability properties. And it is well known that in a multivariate system eigenvalues 
are continuous functions of the basic parameters of the model’s structural equa-
tions.16 Accordingly, it will be possible to relate different causal specifications of 
such a model to different groupings of system eigenvalues – groupings that imply 
different solutions for the multivariate counterpart of φ1.

Indeed, it is possible to generalize the conclusion obtained above – namely, that 
the appropriate RE solution can be identified as the one that results in a value of 
zero for the solution parameter φ1 when the structural parameter c equals zero – 
by means of the multivariate counterpart of equation (2). It might be noted par-
enthetically that, in the univariate example above, this rule happens to coincide 
with adoption of the φ1 value that is the smaller in absolute value of the two that 
satisfy the quadratic (5). Such a coincidence does not always obtain, however, in 
systems with more endogenous variables; and in such cases the appropriate solu-
tion must be based on the procedure just described. The mechanics of this pro-
cedure is worked out in a companion paper, McCallum (2009a).

To complete the current discussion, however, let us consider “sunspot” solu-
tions for model (2). These can be obtained by looking for solutions not of form 
(3) but more generally of form

 0 1 1 2 2 3t t t ty y yφ φ φ φ ξ− −= + + +  (8)

where ξt is any stationary stochastic process that has the property Et − 1ξt = 0.17 To 
avoid unnecessary symbols, let us take φ0 = 0. Then we have

 1 1 1 1 2 2 3 2 1( ) 0.t t t t t tE y y y yφ φ φ φ ξ φ+ − − −= + + + +  (9)

Substituting these two expressions into model (2) then gives

 1 1 2 2 3 1 1 1 2 2 3 2 1 1[ ( ) ] .t t t t t t t ty y a y y y cyφ φ φ ξ φ φ φ φ ξ φ− − − − − −+ + = + + + +  (10)



Indeterminacy, Causality, and the Foundations of Monetary Policy Analysis 115

Accordingly, we have the undetermined-coefficient requirements

 2
1 1 2a a cφ φ φ= + +  (11a)

 2 1 2aφ φ φ=  (11b)

 3 1 3.aφ φ φ=  (11c)

Now, the last two of these require that either φ1 = 1/a or that φ2 = φ3 = 0. But in 
the latter case we have the same solutions as in (6a) and (6b). In the former case, 
φ3 can be any number but then (11a) reduces to

 2

1 1
,a c

a a
φ= + +  (12)

that is, to φ2 = −c/a, which is not contradicted by (11b). So there is a sunspot 
solution

 1 2 3

1
 t t t t

c
y y y

a a
φ ξ− −= − +  (13)

for any value of φ3. For a suitable range of values of a and c, each of these solu-
tions will be dynamically stable. But whether it is stable or unstable, a solution 
of form (8) is essentially a stochastic extension of (2') and thus reflects the same 
direction of causality as (3) with φ1

(+) from (6b) above, which we have suggested 
is inconsistent with the dynamic specification of the model (2). Thus sunspot 
expressions of the form implied by (8) with Et −1ξt = 0 are not candidates for equi-
libria for the model (2), given that a and c are its parameters pertaining to expec-
tational and inertial influences, respectively. Equivalently, no sunspot expressions 
of the indicated form yield candidate equilibria for model (2) with the specifi-
cation that yt −1, but not yt, is predetermined. Under that specification, aφ1 ≠ 1, 
φ2 = φ3 = 0, and the relevant candidate solution is (3) with (6a).



116 Bennett T. McCallum

4. Proposal as a Solution Refinement

In this section the objective is to modify the foregoing argument by proposing 
a criterion or “solution refinement” based on continuity of solution coefficients 
with respect to structural parameters. The discussion will (as before) be limited 
to linear models.

Consider again the univariate model, assumed to be structural:

 1 1,  1.t t t ty aE y cy a+ −= + ≠  (14)

Here we have for simplicity omitted the constant term and exogenous shocks, 
which are inessential to the argument. The fundamental solutions are of the 
form

 1t ty yφ −=  (15)

so 2
1 1.t t tE y yφ+ −=  Then substitution of the latter and (15) into (14) followed by 

undetermined-coefficient (UC) reasoning indicates that φ must satisfy

 2 0.a cφ φ− + =  (16)

Thus the fundamental solutions are given by (14) with the following two values 
for φ:

 ( ) 1 1 4
2

ac
a

φ − − −
=  (17a)

 ( ) 1 1 4
.

2
ac

a
φ + + −

=  (17b)

The proposed refinement is that φ must be continuous in the parameters a and c. 
In particular, φ must be continuous in ‘a’ over open intervals of values that include 
(a,c) and (0,0). Then we focus on cases in which a → 0. The rationale is that in 
this extreme case expectational effects are absent so the solution is unambigu-
ously yt = cyt−1. In addition, small values of ‘a’ reflect cases in which expectational 
effects are small, so they should imply solutions with φ close to c. Furthermore, 
continuity of solution parameters is necessary for impulse-response functions to 
be well behaved when exogenous variables are included in the model.
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18 The first of the two limits is obtained by means of l’Hôpital’s rule.
19 Again it should be mentioned that any RE solution to model (14) can be expressed in this 

form. See, e.g., Lubik and Schorfheide (2003).

Clearly, this requirement implies that the solution is given by (15) with the 
limiting value, as a → 0, of φ (−) = c, as in (6a), and not by φ (+) = ±∞, i.e., an 
infinite discontinuity.18 It is useful to note also that (with a ≠ 0) as the param-
eter c → 0 we have φ (−) → 0, whereas φ (+) → 1 / a. Thus the refinement leads to 
the same solution as the minimum state variable (MSV) solution suggested by 
McCallum (1983).

From the foregoing we see that the proposed refinement leads to a single solu-
tion when we are limiting consideration to fundamental solutions. But suppose 
we admit solutions of the general “sunspot” form

 1 1 2 2 3 ,t t t ty y yφ φ φ ξ− −= + +  (18)

where ξt is a stationary stochastic process with the property Etξt+1 = 0.19 Then 
we have

 1 1 1 1 2 2 3 2 1( ) 0t t t t t tE y y y yφ φ φ φ ξ φ+ − − −= + + + +  (19)

and substitution into (14) leads to the following UC conditions:

 2
1 1 2a a cφ φ φ= + +  (20a)

 2 1 2aφ φ φ=  (20b)

 3 1 3aφ φ φ= . (20c)

Now, the last two of these require that either aφ1 = 1 or that φ2 = φ3 = 0. In the 
latter case we have the same fundamental solutions as before, but in the former 
case φ3 can be any number and then (20a) reduces to

 2

1 1
,a c

a a
φ= + +  (21)

that is, to φ2 = −c/a, which is not contradicted by (20b). So there is a sunspot 
solution
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20 The coefficient on yt−1 in (22) implies that a tiny change in the expectational parameter a – 
say, from 0.01 to −0.01 – could have an implausibly large effect on the dynamic behavior of yt.

 1 2 3

1
 .t t t t

c
y y y

a a
φ ξ− −= − +  (22)

for any finite value of φ3. Clearly, however, the solution coefficients are not con-
tinuous at a = 0.20 So the proposed refinement rules out all solutions except (15) 
with φ given by φ (−). Obviously, to be useful this result must extend to richer 
models. Even in the present context, however, it is interesting that there is only a 
single solution that satisfies the continuity principle. More significantly, perhaps, 
it is the same solution as the one that utilizes the “direction of causality” criterion 
as developed above in Sections 2 and 3, as well as the “minimum state variable” 
solution. In any event, it is the case that the above argument carries over to a mul-
tivariate version of model (14); this is demonstrated in McCallum (2009b).

5. Concluding Remarks

For the argument developed above to be of broad significance, it must – as just 
suggested – be extended to a more general multivariate setting. But the needed 
extension is available. Specifically, in McCallum (2009a, 2009c) it is shown 
that a generalization of the results applies to any model that can be written in 
the following form:

 yt = AEt yt+1 + Cyt−1 + Dut (23)

 ut = Rut−1 + εt. (24)

Here A and C are m × m, D is m × n, εt is n × 1 white noise, and R is n × n with 
all eigen-values less than 1 in modulus. This specification is very broad; any 
model satisfying the forms used by King and Watson (1998) or Klein (2000) 
can be written in this manner, thereby admitting any finite number of lags, 
expectational leads, and lags of leads.

In sum, then, the present paper proposes a solution refinement that yields a 
single rational expectations solution for a very broad class of linear models – 
including those generally used in monetary policy analysis. This result is of major 
importance for obtaining the practical implications of standard monetary policy 
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analysis in a variety of practical policy concerns. Examples of the latter include 
issues relating to the Taylor principle, inflation forecast targeting, the deflation-
trap hypothesis, and the fiscal theory of the price level.
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SUMMARY

To be useful as a guide to behavior, a model that includes a relationship between 
xt and zt+1 must specify whether xt is influenced by the expectation at t of zt+1 or, 
that zt+1 is inertially influenced by xt. We show that, for a broad class of linear 
RE models, distinct causal specifications will be uniquely associated with dis-
tinct solutions. Alternatively, a solution refinement requiring continuity of solu-
tion coefficients with respect to basic parameters implies this same solution. For 
a given structure there is only one RE solution that is fully consistent with the 
model’s specification.


