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1. Introduction

This paper uses a yield curve model to perform a kind of “event study” – with the 
objective of understanding how bond term (risk) premia are affected by monetary 
policy moves. The event study amounts to estimating the typical joint movements 
of the yield curve factors on days with monetary policy decisions and then trac-
ing out the implications of those movements for yields and term premia.

A traditional event study of the effects of monetary policy surprises on the yield 
curve can reveal many interesting facts (see, for instance, Ranaldo and Rossi, 
2010). However, it cannot say much about why long yields change: is it because 
of expected future short rates or term premia? I try to overcome this by perform-
ing the event study within the confines of an estimated yield curve model.

This yield curve model is estimated on daily financial data. This stands in 
contrast to most macro-finance models (see, for instance, Ang and Piazzesi, 
2003, and Hördahl, Tristiani, and Vestin, 2006), which are typically esti-
mated on monthly data and usually include also macro data. For instance, Lild-
holdt, Panigirtzoglou, and Peacock (2007) and Chun (2005) show that 
term premia may be related to the output and inflation. The current paper uses 
only financial data, since the event study method requires daily data to get pre-
cise measures of monetary policy shocks. The focus of the current paper is thus 
on short-run movements.

The estimated yield curve model is driven by two latent factors and two option-
based risk factors. The latter are assumed to drive the time variation of the term 
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premia. Overall, the estimated model appears to fit data well. The pricing errors 
are small and the average yield curve is well captured. The model also generates 
interest rate changes that square well with independent evidence on monetary 
policy surprises and yield curve slopes that fit the time series pattern of survey 
based measures of term premia.

By feeding the model with the typical pattern observed in the factors on days 
with monetary policy decisions, the responses of yields and term premia are traced 
out. Among other things, the results show that an increase of the policy rate typi-
cally leads to small increases of the term premia for short/medium maturities and 
a reasonably sized decrease of the term premia for long maturities.

The outline of the paper is as follows. Section 2 presents the data; Section 3 
summarises the yield curve model; Section 4 discusses the estimation method; 
Section 5 presents the empirical results and Section 6 concludes. Some technical 
details are relegated to the appendix.

2. Data

The main data used in this paper consists of Swiss interest rates and interest rate 
caps (options). The sample is daily (excluding weekends) and covers the period 
from 15 January 2002 to 31 May 2009. The starting date is due to limited avail-
ability of reliable data on the interest rate caps.

The yield data for maturities from one week to one year (1w, 1m, 2m, 3m, 6m, 
9m, 12m) are based on Libor rates and for maturities from 2 to 10 years on the 
zero coupon yields from swaps (provided by Datastream). All yields are converted 
into continuously compounded yields.

The upper panel of Figure 1 shows all the yield data and the lower panel 
shows the term spread between the 10-year yield and the 3-month yield. In this 
sample, the term spread is always positive, but changes over time. There are two 
possible explanations for a positive spread: expected future short rates are higher 
than the current short rate and/or long rates are affected by (risk) term premia. 
The spread is always positive in this sample, which suggests that term premia 
are important.

An interest rate cap is a portfolio of call options (“caplets”) on future interest 
rates. For instance, a one-year cap consists of three options on 3-month interest 
rates, starting 3, 6 and 9 months ahead respectively. Each of these options pays 
the difference between the 3-month rate and the cap rate (say, 1%) if the dif-
ference is positive and zero otherwise. A cap can therefore be used to guarantee 
that the effective interest rate cost on a floating rate loan does not exceed the 
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cap rate. Clearly, this insurance comes at a price, which by market conventions 
is quoted as an implied volatility (the annualized volatility such that the Black-
Scholes formula applied to each of the options would generate the same price as 
the actual market price). Figure 2 shows the implied volatilities (from Bloomb-
erg) for a 1-year cap (upper panel) and a 5-year cap (lower panel). The different 
curves represent different cap rates, from 0.5% to 5.5%.

Table 1 shows the correlations between the 5-day change of the 3-month yield 
and other variables. For the full sample, the correlation with the term spread is 
−0.39 while the correlations with the implied volatilities (median value across 
cap rates) are negative but close to zero. Around days with monetary policy deci-
sions, the correlations with the term spread and the 5-year implied volatility are 

Figure 1: Zero Coupon Yields and Term Spread

The upper panel shows continuously compounded zero coupon rates based on Libor (1w–12m) 
rates and swap rates (2y–10y). The lower panel shows the yield spread between the 10y rate and 

the 3m rate.
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Figure 2: Implied Volatilities of Rate Interest Caps, Cap Rates of 0.5% to 5.5%

The upper (lower) panel shows the implied volatilities for 1y (5y) interest rate caps.
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Table 1: Correlation between the 5-Day Change of the 3-Month Yield and other 
Variables

This table shows the correlations of the 5-day change of the 3-month yield with the 5-day 
change of other variables. For the dates with monetary policy decisions (t), the change is 

measured as xt+2 − xt−2.

 Full sample Around monetary policy decisions 

Term spread (10-year minus 3-month) −0.39 −0.71 

Implied volatility, 1-year −0.09 −0.18 

Implied volatility, 5-year −0.06 −0.42 
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1 However, Bolder and LIU (2007) argue that imposing no-arbitrage restrictions might hurt 
the empirical performance (for instance, in forecasting) compared to more agnostic models 
like Diebold and Li (2003).

much more negative (−0.71 and −0.42, respectively). In contrast, the correla-
tion with the 1-year implied volatility decreases only a little. This suggests that 
the information content in the monetary policy decisions is distinctly different 
compared to most other drivers of the 3-month rate. In particular, it seems as 
if higher policy rates are associated with a downward tilt of the yield curve (as 
short rates increase more than long ones) and also with lower implied long-run 
volatilities.

3. The Yield Curve Model

This section presents the theoretical foundation of the yield curve model.
This is an affine yield curve model where the market price of risk is linear in 

the factors (see Duffee, 2002). It contains an explicit modelling of the pricing 
kernel and there are no arbitrage opportunities.1 The building blocks are the 
following:
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First, the short rate (  y1t ) is an affine function of the factors ( xt , a vector). Second, 
the log stochastic discount factor ( mt+1 ) is written in terms of the short rate (basi-
cally representing the conditional mean) and a term representing systematic risk 
( χt+1 ). Third, the systematic risk depends on the market prices of risk (−θt, 
which is predetermined) and normally distributed innovations (εt+1). Fourth, 
the market prices of risk depend on the state variables. Fifth, the factors follow 
independent AR(1) processes (Ψ and S are diagonal matrices).

It can be shown that the solution of the model is that all yields are affine func-
tions of the state variables. For instance, the yield for maturity n is

 ,nt n n ty a b x′= +  (2)
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where an and bn can be calculated from the parameters in (1). (See the appendix 
for details.)

In practice, I use a 4-factor system where the short rate and the market prices 
of risk are defined as
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 (3)

The first two factors (x1t and x2t) are considered to be latent – and are therefore 
backed out from the 3-month and 10-year yields (see below for details). The third 
and fourth factors (x3t and x4t) are observable factors representing bond market 
risk – calculated from interest rate options.

The blocks of zeros in (3) have two important implications. First, only the 
first two (latent) factors affect the short interest rate. For that reason the two last 
rows of θ0 and θ1 must be zeros – as we cannot identify “prices of risk” of fac-
tors that have no direct loadings on the short rate. In contrast, the assumption of 
a1 = 0 and the unit loadings in b1 are just normalisations. Second, only the last 
two factors (x3t and x4t ) affect the market price of risk. To sharpen the identifi-
cation, it is assumed the price of risk of the first factor (θ1t ) is affected by both 
the third and fourth factors, while the price of risk of the second factor (θ2t ) is 
affected only by the third factor.

Together, this means that an n-period yield has two main components: first, 
the “expectations hypothesis” part, that is, the average expected future short rate 
(driven by x1t and x2t); second, the term premium part (driven by x3t and x4t ). The 
time-variation of the term premia depends on the parameters in θ1 and negative 
values will make the term premia increase when the risk factors do. The param-
eters in θ0 determine the average (over time) term premia.
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4. Estimation Method

This section describes how the option data is used to create proxies of bond 
market risk and how the yield curve model is estimated.

4.1 Estimation of Bond Market “Risk”

Option data captures market beliefs about future volatility – and is therefore a 
forward looking alternative to traditional measures of volatility such as predic-
tions from GARCH models and realised volatility. This makes interest rate caps 
interesting proxies of bond market risk.

If the Black-Scholes model was correct, then the implied volatility would be 
the same for all cap rates – and equal to the standard deviation of the underlying 
riskneutral distribution of future interest rates. However, the implied volatilities 
in Figure 2 differ markedly across the cap rates, so another approach is warranted. 
I therefore use the data on the caps to estimate the shape of the distribution – 
assuming that it can be approximated by a mixture of two lognormal distribu-
tions (Ritchey, 1990), and then construct a robust measure of volatility.

This approach gives a f lexible distribution with few parameters (five: two 
means, two variances and the relative weight on the two mixture components). 
This riskneutral distribution can be motivated by assuming that the log pricing 
kernel and the log underlying asset price (here: the future interest rate) have a joint 
mixture-normal distribution, but with the restriction that the marginal distribu-
tion of the log pricing kernel is normal. The implication is that the cap price is

 2 2
1 1 2 2= ( , ) (1 ) ( , ),C G Gα μ σ α μ σ+ −  (4)

where C is the price of the cap (obtained by inverting the formula used to cal-
culate the implied volatilities), α is the weight on the first mixture component 
and G() is a function that depends on the mean (μ i) and the variance (σi

2) of 
mixture component i. In case α = 1, then the result coincides with the Black-
Scholes formula. (See Söderlind and Svensson, 1997, and Söderlind, 2000, 
for details.)

In practice, this means that for a given cap maturity (1 year, say), all contracts 
with different cap rates (typically 9–11 different cap rates ranging from 0.5% to 
5.5%) on a trading day are used to estimate the five parameters in (4). This is 
done by minimizing the sum of squared pricing errors (non-linear least squares). 
The estimation is repeated for every trading day and every maturity of interest 
(the focus here is on the 1-year and the 5-year maturities).



392 Paul Söderlind

From these distributions, robust measures of volatility are constructed as the 
widths of 80% confidence bands (90th percentile minus the 10th percentile). The 
reason for this approach is that the data is able to pin-point the 10th and 90th 
percentiles with reasonable accuracy, but it gets progressively worse as we move 
further out in the tails as there are few/no cap rates out there.

The yield curve model estimation below uses the width of the 80% confidence 
band for the 1-year horizon (henceforth called “1-year bond market risk”) and the 
difference between the 80% confidence band widths for the 5-year and 1-year 
horizons (henceforth called “term spread of bond market risk”). Both these fac-
tors are standardised to have zero means and approximately the same volatility 
as the yields. Since these risk measures are calculated from the riskneutral distri-
butions of future yields, they incorporate market beliefs about future volatility 
and possibly also risk aversion.

4.2. Estimation of the Yield Curve Model

The yield curve model is estimated by maximum likelihood (MLE), assuming 
normally distributed errors. The two latent factors (x1t , x2t ) are backed out from 
(2) by treating the 3-month and 10-year yields, as well as the third and fourth 
factors (x3t , x4t ) as observable (see the appendix for details). The third factor (x3t) 
is 1-year bond market risk and the fourth factor (x4t) is the term spread of bond 
market risk (see Section 4.1).

The time series part of the likelihood function is defined in terms of the inno-
vations of the four factors. All other (than the 3-month and 10-year) yields are 
treated as if they have “observation errors”, so the cross-sectional part of the like-
lihood function is defined in terms their yield errors – where the fitted yields 
depend on the factors according to (2). (Details are in the appendix.)

It is well known that there are numerical issues with estimating yield curve 
models (see, for instance, Duffee, 2002). To overcome this, I apply a “small-to-
large” approach – and use the estimation results from the previous step as start-
ing values in the estimation algorithm. In practice, I first estimated a one-factor 
model, then a two-factor model, later a 3-factor model and finally the 4-factor 
model – and the market prices of risk were also allowed to become more and 
more flexible. Initial estimates indicate that the first factor is a random walk, 
so this is imposed in the estimations reported below. This makes all the yields 
cointegrated, so MLE can be applied. Finally, a crude grid search is used to gauge 
indications of a local maximum.

The estimated parameters turn out to be strongly significant (reported in the 
appendix), but this finding should be taken with a grain of salt: the likelihood 
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function is highly non-linear in the parameters and the estimation results indi-
cate that the factors are very persistent. Both features make the properties of MLE 
(and the standard errors, in particular) unclear.

5. Empirical Results

This section presents the empirical results and performs the event study of how 
yields and term premia move on days with monetary policy decisions.

5.1 Empirical Results: Implied Distributions

Figure 3 illustrates estimation results from the 1- and 5-year interest rate caps. 
The upper panel shows the bond market risks calculated from the estimated 
distributions (90th minus 10th percentile). Overall, these measures of risk are 
higher in the middle of the sample than at either end of the sample. The results 
for the two horizons often show similar movements, but there are also important 
deviations – most easily seen in the lower panel which shows the term spread of 
bond market risk (the difference between the 5- and 1-year risks). For instance, 
the 5-year risk shoots up significantly on two occasions in 2003 while the 1-year 
risk does not. Conversely, the 1-year risk moved much more than the 5-year risk 
during the autumn of 2008.

By comparing the yields in Figure 1 with these results on bond market risk, it 
seems as if the yields for shorter (longer) maturities are positively correlated with 
1-year (5-year) risk. For instance, the 10-year yield seems to move in tandem with 
the 5-year risk for much of the period 2002–2006. This impression is verified by 
Table 2 which shows the correlations for 5-day changes. It is also interesting to 
notice that the term spread (10-year yield minus 3-month yield) is strongly cor-
related with the 5-year risk as well as with the term spread of the risks, but not 
much with the 1-year risk.
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Figure 3: Bond Market Risk Estimated from 1- and 5-Year Interest Rate Caps

The upper panel shows the bond market risk calculated from the estimated riskneutral 
distributions (90th minus 10th percentile). The lower panel shows the term spread of the bond 

market risk (5-year risk minus 1-year risk).
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Table 2: Correlation between the 5-Day Change of Bond Market Risk  
and other Variables

This table shows the correlations of the 5-day change of the 1-year and 5-year bond market risks, 
with the 5-day change of other variables. The term spread is the 10-year minus 3-month yield.

 1-year bond market risk 5-year bond market risk Term spread  
of bond market risk

3-month yield 0.33 0.16 −0.20

10-year yield 0.15 0.53 0.30

Term spread −0.08 0.40 0.42
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5.2 Empirical Results: Yield Curve Model

Figure 4: Properties of the Estimated Yield Curve Model

The upper left panel shows the time series of the fitted errors for two maturities (1 and 7 years). 
The upper right panel shows the average yield curve in data and fitted values. The lower left 

panel shows the factor loadings for different maturities. The lower right panel shows the instan-
taneous forward term premia for different values of the risk factors: at the average values and 
at the average values plus 2 standard deviations of either the third (“high x3”) or fourth factor 

(“high x4”).
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Figure 4 illustrates the estimated yield curve model. The upper left panel suggests 
that the pricing errors (only the 1- and 7-year maturities are shown) are typically 
small, while the upper right panel shows that the average yield curve implied by 
the model is very close to the data.

It is straightforward to show that the affine representation in (2) can be written.

 1 1 2 2 3 3 4 4 ,nt n n t n t n t n ty a b x b x b x b x= + + + +  (5)
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2 The estimated factors are very similar to the data discussed above. The first factor is very simi-
lar to the 10-year yield, while the second factor is almost the same as the negative of the terms 
spread (see Figure 1). The third factor is a standardised version of the 1-year bond market risk, 
and the fourth factor is a standardised version of the term spread of the bond market risk (see 
Figure 3).
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The expressions for b1n and b2n incorporate the facts that the first factor is a 
random walk and that the second factor is an AR(1) with autocorrelation ρ2. 
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The lower left panel of Figure 4 shows these factor loadings. It is clear that 
the first factor (latent) generates the overall level of the entire yield curve (it is 
random walk, so b1n = 1 for all maturities), while the second factor also latent) 
affects short maturities more than long maturities (0 < ρ2 < 1) – and is there-
fore the main driver of the slope of the yield curve. Together, they represent the 
expectations part of the yield, that is, that part of the n-period yield that corre-
sponds to the average expected future short rates. The third factor (1-year bond 
market risk) generates similar term premia for all yields except for the very short-
est maturities (bn3 is positive and similar for all maturities longer than 3 months). 
In contrast, the fourth factor – the term spread of bond market risk – has an 
impact (bn4) that increases almost linearly with maturity.2

The lower right panel of Figure 4 shows what these factor loadings imply for 
the forward term premia. The average term premia increase with maturity – to 
fit the average slope of the yield curve. When the third factor is high (here 2 
standard deviations above the mean) then the term premia increase for all matu-
rities: the curve is almost a parallel upward shift of the curve for the average term 
premia. In contrast, when the fourth factor is high, then it is mostly the term 
premia for longer maturities that increase. It is thus the fourth factor that is the 
main driver behind the “term spread” of term premia (which is consistent with 
the pattern previously discussed in conjunction with Table 2).

Table 3 illustrates the relative importance of the different factors, by show-
ing how much of the 1-day and 3-month forecast error variances that is due the 
four different factors. At the 3-month forecasting horizon, the first two (latent) 
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Figure 5: Comparing the Model Output to Other Data

The upper left panel plots the fitted innovations in the 3-month yield against the monetary 
policy surprises calculated from a 20-minute data window in Ranaldo and Rossi (2010). 

The upper right panel shows a (monthly) survey based forward term premium (3-month rate 
3 months ahead in time) and the same term premium as implied by the estimated model. The 
survey based term premium is computed as the forward rate minus the 3-month forecast of the 
3-month Libor according to the panel of experts in the Consensus Forecast survey. The lower 

left panel shows the same thing, but for a 10-year rate 1 year ahead in time.
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Table 3: Decomposition of Forecast Error Variances in %

This table shows the decomposition of the forecast error variance for the 1-day and 3-month 
forecast horizons, for three different interest rates: 3m, 1y and 7y yields. The decomposition 

sums to 100 %, except for rounding.

 1-day horizon 3-month horizon 

3m 1y 7y 3m 1y 7y

Factor 1 41.2 43.5 61.0 44.7 49.3 70.5

Factor 2 53.8 45.3 14.1 54.1 47.5 15.1

Factor 3 5.0 10.8 14.9 1.2 2.7 3.8

Factor 4 0.0 0.5 10.9 0.0 0.5 10.6
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3 The results are based on all dates with monetary policy decisions, except the annual General 
Meetings. Including also the days with the General Meetings gives very similar results.

factors each account for around half of the forecast errors for 3m and 1y yields, 
while the third and fourth factors (bond market risk) are unimportant. In con-
trast, longer maturities like the 7y yield is more tied to the first factor (70.5%) 
and also influenced by the fourth factor (10.6%). The results for the 1-day fore-
casting horizon are similar, except that they give a larger role for the third factor. 
Together with the previous results on the factor loadings, we can conclude that 
the expectations hypothesis accounts for most of the movements, but that the 
third factor induces some high-frequency changes in term premia for most yields 
(except the very short maturities) and the fourth considerable low-frequency term 
premia for long yields.

To further assess the fit of the model, Figure 5 compares the model output 
with data on monetary policy surprises and survey based term premia. The upper 
left panel suggests that the model’s fitted one-day innovations of the 3-month 
yield are indeed similar to the monetary policy surprises (from Ranaldo and 
Rossi, 2010) calculated from a 20-minute window around the announcement 
(the correlation is 0.77).3 The upper right panel shows that the fitted term premia 
for the 3-month yield (for a forecasting horizon of 3 months) mostly moves in 
tandem with the risk premium implied by monthly survey data from Consensus 
Economics (on the days with survey data the correlation is 0.57). The lower left 
panel – for the 10-year yield, with a forecasting horizon of 1 year – shows some-
what larger discrepancies. Overall, this still lends some support to the validity 
of the model.

5.3 Empirical Results: Event Study

The estimated model has implications for many aspects of the yield curve (includ-
ing predictability and pricing of derivatives), but the focus here is on the yield 
curve slope and the term premia. I use the model to simulate the typical behaviour 
of the yield curve in response to a change of the 3-month yield. This is captured 
by a generalized impulse response function, which shows the reaction to a 1% 
increase in the 3-month yield – incorporating how all factors typically move in 
response to such an increase. (Technical details are in the appendix.)

On average days (based on the evidence from the full sample), the correla-
tions of the first two factors and last two factors are virtually zero (−0.09 to 
0.06). (This is indeed consistent with the model assumption that the factors are 
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4 Lengwiler and Lenz (2008) discuss how monetary policy is likely to affect several factors in 
a yield curve model.

uncorrelated: S in (1) is assumed to be a diagonal matrix.) Therefore, the typical 
response of the risk premium to changes in the 3-month rate is zero.

However, on days of monetary policy decisions another pattern emerges – 
as previously indicated in Table 1. I therefore perform a kind of event study by 
first estimating the covariances of the factor innovations on days with monetary 
policy decisions – and then use those to generate a typical scenario for mone-
tary policy days.4 The basic assumption of this approach is that the interest rate 
decision is key mover on the monetary policy dates, so that the covariance pat-
terns can be interpreted as the results of monetary policy surprises. This is plau-
sible in most cases, but a few caveats are warranted. First, some of the monetary 
policy dates might be “contaminated” by important news from elsewhere. For 
instance, the interest rate decision on 8 October 2008 (coordinated across several 
central banks) could be such a case. Second, the effective sample for monetary 
policy dates is small: there are relatively few monetary policy dates in the sample 
(35) and the covariance estimates from those days are dominated by a number 
of sharp cuts in the policy rate. This suggests that the estimated effects reported 
below should only be considered as indicative.

The results are shown in Figure 6: the short rates increase as much as the policy 
rate, but the long rates actually decrease somewhat, so the yield curve is tilted 
downwards. The main reason is that the increase in the policy rate is expected to 
be long-lived, but not permanent: the expected future short rates are lower than 
the current rate. This affects the long yields via the expectations mechanism. How-
ever, the term premia also react to the policy shift. There is a small increase of 
the term premia (around 0.05%–0.08%) for maturities up to a year, a zero effect 
at the two year maturity and around a sizeable decrease (−0.25%) for the ten-
year maturity. The reason is as follows. When the 3-month rate increases, then 
(on days with monetary policy decisions) there is typically a small increase in the 
third factor (1-year bond market risk) – which leads to a small increase of term 
premia for all maturities (compare with the lower panel of Figure 5). At the same 
time, there is typically also a marked decrease in the fourth factor (“term spread” 
of bond market risk) which decreases the term premia for the longer maturities. 
(This is clearly consistent with the evidence previously presented in Table 1.)

A key finding is thus that the estimated yield curve model shows that term 
premia for longer maturities tend to decrease in response to interest rate hikes. 
One possible interpretation is that higher policy rates reconfirm the credibility 
of the price stability target.



400 Paul Söderlind

6. Concluding Remarks

How term premia react to monetary policy moves is an important question for 
both investors and analysts of the real effects of policy. This paper gives a par-
tial answer by estimating a yield curve model on daily Swiss data for the period 
from January 2002 to May 2009 – and then calculating the impulse responses 
to an increase in the 3-month rate.

The model is an affine 4-factor model, where the first two factors are latent. 
The last two factors are based on data on interest rate options – and they are 
the drivers of the time variation of term premia. The estimated model generates 
innovations in the 3-month rate that are similar to external evidence of monetary 
policy surprises, as well as term premia that are consistent with survey data.

The results show that, on days with monetary policy surprises, there is a 
marked negative covariance between the policy move and the key option-based 
risk factor. Simulating such a scenario in the yield curve model gives term premia 
for long maturities that decrease in response to an interest rate hike.

Several things could be improved in this paper. First, the estimation results 
indicate close to non-stationarity for some of the (supposedly stationary) factors, 

Figure 6: Reaction of Yields and Term Premia to a Monetary Policy Surprise

This figure shows the generalised impulse responses of yields, expected average future short 
yields and the yield term premium (yield minus the expected average 3-month yield until matu-

rity), based on the covariance matrix of the factor innovations on days with monetary policy 
decisions.

0 2 4 6 8 10

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Maturity (years)

 

Expected future short rate
Term premium
Yield



Reaction of Swiss Term Premia to Monetary Policy Surprises 401

which makes the inference shaky. A Monte-Carlo or Boot strap simulation could 
perhaps be useful. Another promising approach is to apply a Bayesian estimation 
method. Second, the external evidence on monetary policy surprises and expected 
future yields could possibly be used in the estimation (Kim and Orphanides, 
2005; Fischer, 2009). Third, the pricing implications for the interest rate caps 
could be explored and integrated into the estimation.

A. Appendix

A.1 The Yield Curve Model

The An and Bn values can be calculated as
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where the recursion starts at B0 = 0 and A0 = 0 (or B1 = b1 and A1 = a1). Then, 
define an = An / n and bn = Bn / n.

A.2 Yield Curve Estimation

Let an = An / n and bn = Bn / n. Collect the K y perfectly observable yields in the 
vector yot and the J yields with observation errors in yut. (2) can then be written
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where K factors are in the vector xt and εt are the observation errors.
The KF explicit factors Ft and yot can be used to back out the be xt vector as
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(Clearly, the last KF elements of xt are identical to Ft.)
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The log likelihood function is

 , 1 1=1
ln ln ( , | , ) ln ( | , ),

T

ot t o t t ut ot tt
pdf y F y F pdf y y F− −= +∑L

where the first part captures the one-period innovations in yot and Ft and the 
second part the cross-sectional errors in ( ).ut ut u u ty y a b x′− −  Both probability 
density functions (pdf ) are assumed to be Gaussian with zero means. For the 
one-period innovations, the covariance matrix is driven by S in (1) and also the 
mapping from xt to (   yot, Ft) – see above. For the cross-sectional pricing errors, 
it is assumed that the covariance matrix is ω2IJ, where ω is a scalar. That is, the 
observation errors are assumed to be uncorrelated and have the same variances.

The first factor is assumed to be a random walk, so ρ1 is set to unity. This 
means that the yields are cointegrated. To restrict factors 2–4 to be stationary, 
the autoregressive parameters ( ρ i , the diagonal elements of Ψ) are transformed by 
a logistic function. This means that the optimization algorithm searches for the 
optimal ri and the autoregressive parameter is defined as ρ i = 1 − 2 / [1 + exp(ri )], 
which restricts ρ i to be between −1 and 1.

The parameter estimates are given in Table 4. Notice that the somewhat unu-
sual scale of the price of risk parameters is due to use of daily data. Similarly, the 
autocorrelation parameters are very high due to daily data, but the implication for 
long maturities is different. For instance, for ρ2 notice that 0.99872500 = 0.0387 
so the effect on the 10-year yield of the second factor is almost zero.

Table 4: Parameter Estimates

This table shows the estimated parameters and t-stats. ρ i is the i-th diagonal element  
in the Ψ matrix and σi in the S matrix. All σi and also ω are annualised  

and expressed in percent by multiplying with 250 × 100.

 coef std

θ1
0 −0.0074 0.0002

θ2
0 −0.0579 0.0253

ρ1
1

ρ2
0.9987 0.0000

ρ3
0.9637 0.0008

ρ4
0.9985 0.0001

σ1
0.0463 0.0007
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 coef std

σ2
0.0551 0.0008

σ3
0.1503 0.0013

σ4
0.1497 0.0013

ω 0.1495 0.0004

θ1
1
3 −2707.3848 105.3537

θ1
1
4 −154.5826 5.6224

θ2
1
3 −653.7320 64.5276

A.3 The Generalized Impulse Response Function

Let εt be the vector of shocks and use the following values as the impulse: 
E(εt | εit = 1)  = Σi / σii, where Σi is column i of the covariance matrix of εt and 
σii  is the variance of εit. This means that the value of the entire vector εt is pre-
dicted (assuming that εt is normally distributed) using the information εit = 1 
(see Pesaran and Shin, 1998, for details). Clearly, when the shocks are uncor-
related, then coincides with a traditional impulse response function (where the 
impulse is εit = 1 and εjt = 0 for j ≠ i).
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SUMMARY

An affine yield curve model is estimated on daily Swiss data 2002–2009. The 
market price of risk is modelled in terms of proxies for uncertainty, which are 
estimated from interest rate options. The estimated model generates innovations 
in the 3-month rate that are similar to external evidence of monetary policy sur-
prises – as well as term premia that are consistent with survey data. The results 
indicate that a surprise increase in the policy rate gives a reasonably sized decrease 
(−0.25%) in term premia for longer maturities.


