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Abstract

This article develops unbiased weighted variance and skewness estimators for overlapping return distributions. These
estimators extend the variance estimation methods constructed in Bod et. al. (Applied Financial Economics
12:155-158, 2002) and Lo and MacKinlay (Review of Financial Studies 1:41-66, 1988). In addition, they may be used in
overlapping return variance or skewness ratio tests as in Charles and Darné (Journal of Economic Surveys 3:503-527,
2009) and Wong (Cardiff Economics Working Papers, 2016). An example using synthetic overlapping returns from a
model fit to data from the SPY S&P 500 exchange traded fund is given in order to demonstrate under which
circumstances the unbiased correction becomes significant in skewness estimation. Finally, we compare the effect of
the HAC weighting schemes of Andrews (Econometrica 53:817-858, 1991) as a function of sample size and
overlapping return window length.
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Introduction
Overlapping returns are used in many contexts in the
finance and econometrics literature. Applications include
variance ratio tests, regression parameter error esti-
mation, and alternative resampling methods. Standard
statistical inference and estimation techniques applied
to overlapping return financial time series are typically
biased. In addition, for such series, recent data is regularly
viewed as more relevant than past information, which
has resulted in the creation of weighted generalizations
of estimation methodologies. This motivates the develop-
ment of unbiased analogues of such estimators which we
explore in the cases of the variance and skewness statis-
tics. Our central aim is to construct unbiased weighted
variance and skewness estimators for overlapping return
distributions.
Several estimation procedures and hypothesis testing

frameworks have been improved through the utilization
of overlapping returns. In financial overlapping return
applications, Lo and MacKinlay (1988) and Hansen and
Hodrick (1980) demonstrate how overlapping returnsmay
be used to increase the efficiency of statistics used in
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variance ratio tests. Dunis and Keller (1995) developed a
panel regression method based on overlapping returns,
and Müller (1993) concludes utilizing overlapping returns
in most applications will result in an overall increase in
estimation precision of statistics that are a function of the
overlapping returns when compared with their analogues
for simple returns. In Jackwerth (2000), the author discov-
ered that the overlapping return distribution for the S&P
500 is left-skewed and examined differences between risk
neutral and realized distributions between overlapping
and non-overlapping returns of the S&P 500 index and
observed how associated risk aversion functions changed
dramatically around the 1987 stock market crash. Wong
(2016) develops skewness and kurtosis ratio tests for over-
lapping returns. The new weighted unbiased skewness
estimator constructed below may be used as an input into
any of these applications.
The idea of assigning greater weight to recent data

and less weight to past data has been discussed in a
number of econometric and financial studies. Past eco-
nomic data may have little impact or be entirely irrel-
evant for present projections. In addition, by placing
additional weight on recent data, associated estimation
procedures tend to react more strongly to structural
changes in the underlying assumption about the distri-
bution the sample is drawn from than their uniformly
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weighted counterparts. For example, Tsokos (2010) shows
that under nonstationary economic realization, weighted
moving average models perform significantly better than
the classical ARIMA model in forecasting stock prices.
Andrews (1991) develops weighting schemes used in the
estimation of covariance matrices assuming the under-
lying time series exhibits nontrivial autocorrelation and
heteroskedasticity which we will utilize below. Weighted
estimators are routinely used in practice as well. In par-
ticular, in Longerstaey and Spencer (1996), it is demon-
strated that exponentially weighted moving average
estimators incorporate external shocks more readily than
equally weighted moving averages, thus providing a more
realistic measure of current volatility.
Volatility and skewness estimation of financial return

distributions has been the subject of a number of articles.
Early examples include usingmaximum likelihood estima-
tion to fit a model distribution to observed data and com-
puting the associated model statistics in Fama (1965) and
Mandelbrot (1963). More recent work has focused on the
estimation of stochastic volatility models in Broto (2004).
Time series techniques have also been widely applied to
this task, c.f. (Tsay 2010). Measuring the asymmetry of
financial return distributions has also been the central
theme of many references. Grigoletto and Lisi (2006) and
Wen and Yang (2009) find persistent non-trivial skew-
ness is present in the simple daily return distributions of
nearly every major international equity index. Xu (2007)
shows that equity return distribution skewness is posi-
tively correlated with simultaneous returns and negatively
correlated with lagged returns.
When working with overlapping returns, especially

when encountering small sample sizes, bias effects from
standard estimators, such as the sample variance, become
important. In Lo and MacKinlay (1988), the authors pro-
vide a consistent but biased overlapping return variance
estimator that has been used in several subsequent refer-
ences, including Liu and He (1991), Fong et al. (1997), and
Amélie and Olivier (2009). This estimator was improved
in Bod et al. (2002) where the authors constructed an
unbiased variance estimator for unweighted overlapping
returns. Kluitman and Franses (2002) extended this work
to develop an estimator that includes the case where the
returns have nontrivial autocorrelation. Our main contri-
bution is to extend these results by developing weighted
unbiased variance and skewness estimators for overlap-
ping return time series.
This article is organized as follows. We first fix notation

and then derive an unbiased weighted estimator for the
variance of a time series of overlapping returns. We give
reduced expressions for this estimator in the cases of uni-
form and exponential weights. Next, we construct a sim-
ilar weighted unbiased estimator for the skewness of an
overlapping return distribution. We then demonstrate the

difference between a normalized version of the skewness
estimator and the standard normalized sample skewness
in a simulation which models the overlapping return dis-
tribution of the S&P 500 index, and then summarize our
results. We finally compare the estimation of the weighted
volatility and skewness of the overlapping return distribu-
tion of the S&P 500 index for various weighting schemes,
sample sizes, and overlapping lengths and conclude with
potential additional questions to explore.

Methodology
We begin by establishing notation. Given integers n, q > 0
with q < n, let pt > 0 for t = 0, . . . , n + q − 1 denote an
asset price time series by pt and let rt = pt/pt−1 − 1 be
the associated simple returns where t = 1, . . . , n + q − 1.
Following Bod et al. (2002) and Lo and MacKinlay (1988),
we assume that rt have zero mean, E[rt]= 0, covari-
ance E[rtrs]= 0 for any t > s, and equal finite variance
Var(rt) = σ 2 < ∞. We note that in Lo and MacKinlay
(1988) and subsequent references, the authors show that
these assumptions, referred to as the random walk ver-
sion of the martingale hypothesis, do not hold for a variety
of financial time series. This is achieved by assuming a
null hypothesis that they hold and then demonstrating
how variance ratios of overlapping returns may be used to
reject this assertion. In this spirit, we proceed by defining
the q-period overlapping returns yt associated with rs by

yt =
t+q−1∑

s=t
rs, for t = 1, . . . , n. (1)

We construct weighted unbiased estimators of the vari-
ance and skewness of yt and pair a weight wt with each yt
such that wt > 0 and

∑n
t=1 wt = 1. Let Wts = ∑s

k=t wk
be the sum of the t-th through s-th weight, and note
W 1n = 1.
We first derive an unbiased weighted overlapping return

variance estimator σ̂ 2
y . We seek an estimator of the form

σ̂ 2
y = C1(n, q,w)−1

n∑

t=1
wt
(
yt − ȳw

)2 , ȳw ≡
n∑

t=1
wtyt ,

(2)

where we find C1 such that σ̂ 2
y is an unbiased estimator of

qσ 2. Note that since ri are independent, the true variance
of each yt is Var(yt) = qσ 2 so that σ̂ 2 is an unbiased esti-
mator of the variance of the random variable from which
yt are sampled from if

E

[
σ̂ 2
y

]
= qσ 2. (3)
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This may be viewed as a constraint that defines the
constant C1(n, q,w) which we determine by computing

E

[
∑

t
wt
(
yt − ȳw

)2
]

=
∑

t
wt
(
Ey2t − 2E

(
ytȳw

)+ E

[(
ȳw
)2]) ,

(4)

and noting that
∑

t
wtE

(
ytȳw

) = E

(
ȳw
∑

t
wtyt

)
= E

[(
ȳw
)2] , (5)

yields
∑

t
wt
(
−2E

(
ytȳw

)+ E

[(
ȳw
)2]) = −E

[(
ȳw
)2] . (6)

Combining the above, we find

E

[
∑

t
wt
(
yt − ȳw

)2
]

=
∑

t
wtEy2t − E

[(
ȳw
)2]

= qσ 2 − Var
(
ȳw
)
,

(7)

where we note that E(yt) = E (ȳw) = 0, and the last
equality follows from E

(
y2t
) = Var(yt) = qσ 2 as well as

Var (ȳw) = E

[
(ȳw)2

]
− E

[
ȳw
]2 = E

[
(ȳw)2

]
.

In order to compute the variance term in the previous
equation, we decompose the weighted average of yt as

ȳw =
q−1∑

t=1
W 1trt+

n∑

t=q
W (t−q+1)trt+

n+q−1∑

t=n+1
W (t−q+1)nrt .

(8)

One may arrive at this decomposition by viewing the
individual return terms of the sum ȳw = ∑

t wtyt
as a table with values wtrs whose first row has ele-
ments, w1r1,w1r2, . . . ,w1rq and final row is given by
wnrn,wnrn+1, . . . ,wnrn+q−1. Note that ȳw is equivalent to
the sum of all values in this table. The first term in this
decomposition corresponds to grouping all elements of
this table above the diagonal whose edge is formed by the
w1rq and wqrq entries and factoring our common returns
multiplied into varying weights. The final term can be
arrived at by aggregating all terms below the diagonal
formed by the wn−q+2rn+1 and wnrn+1 entries. The mid-
dle sum is computed by combining the remaining terms in
the table.
Since each individual sum is composed of returns that

are independent of all the returns in the other two sums,
we find that

Var
(
ȳw
) = σ 2

⎡

⎣
q−1∑

t=1

(
W 1t)2 +

n∑

t=q

(
W (t−q+1)t

)2 +
n+q−1∑

t=n+1

(
W (t−q+1)n

)2
⎤

⎦ .

(9)

Solving for the unbiased constant from Eqs. (7) and (9),
we arrive at

C1(n, q,w) = 1
qσ 2 E

[∑
wt
(
yt − ȳw

)2]

=1− 1
q

⎡

⎣
q−1∑

t=1

(
W 1t)2+

n∑

t=q

(
W (t−q+1)t

)2+
n+q−1∑

t=n+1

(
W (t−q+1)n

)2
⎤

⎦ .

(10)

We note that in the case of uniform weights wt = 1/n,
this result reduces to that of Bod et. al. (2002), where
C−1
B = nC1(n, q,w). Secondly, in the case of exponential

weights ws = αn−s/C with C = (αn − 1)/(α − 1), one can
show

C1(n, q,w)= 2α
q

αq − α2n−q − 1 + α2n − qαn−1 (α2 − 1
)

(
α2 − 1

)
(αn − 1)2

.

(11)

We now derive an unbiased skewness estimator in a sim-
ilar manner. Assume that E

(
r3t
) = γ , so that E

(
y3t
) =

qγ , and consider an estimator of the skewness of the
overlapping return distribution of the form

γ̂y = C2(n, q,w)−1
n∑

t=1
wt
(
yt − ȳw

)3 . (12)

We would like to construct an unbiased estimator of qγ
which requires

E
[
γ̂y
] = qγ . (13)

To determine C2, we compute

E

[ n∑

t=1
wt
(
yt − ȳw

)3
]

=
n∑

t=1
wtE

[
y3t − 3y2t ȳw+

3yt
(
ȳw
)2 − (ȳw)3

]
.

(14)

Decomposing yt into independent rt sums allows one to
calculate the first term with

E
(
y3t
) = E

⎡

⎣
t+q−1∑

s=t
r3s + 3

∑

s�=k
r2s rk +

∑

s�=k �=l
rsrkrl

⎤

⎦

=
t+q−1∑

s=t
E
(
r3s
) = qγ .

(15)

For the second term, we note that

E
[
y2t ȳ

w] =
∑

s
wsE

(
y2t ys

)
. (16)

Computing the expectation, we find,
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E
[
y2t ys

] = E

⎡

⎢⎣
s+q−1∑

k=s
rk

⎛

⎝
t+q−1∑

l=t
rl

⎞

⎠
2
⎤

⎥⎦

= E

⎡

⎣
s+q−1∑

k=s
rk

⎛

⎝
t+q−1∑

l=t
r2l +

t+q−1∑

p�=m
rmrp

⎞

⎠

⎤

⎦

(17)

= E

⎡

⎣
t+q−1∑

k=t

(
rs + · · · + rs+q−1

)
r2k

⎤

⎦ . (18)

Note that only terms of the form r3t are non-trivial in
expectation. Splitting into two cases, we have

E
[
y2t ys

] =
{

(s − t + q)γ s ≤ t ≤ s + q − 1
(t − s + q)γ t ≤ s ≤ t + q − 1 (19)

= (q − |t − s|)γ , 0 ≤ |t − s| ≤ q − 1. (20)
Combining Eqs. (16) and (20), we find that

n∑

t=1
wtE

[
y2t ȳ

w] = γ

n∑

t,s=1
wtws(q−|t−s|)1{|t−s|∈[0,q−1]}.

(21)

For the final two terms, note

E

(
yt
(
ȳw
)2) =

∑

s,k
wswkE(ytysyk), E

(
ȳw
)3

=
∑

t,s,k
wtwswkE(ytysyk),

(22)

so we may simplify
n∑

t=1
wt
[
3yt
(
ȳw
)2 − (ȳw)3

]
= 2E

[(
ȳw
)3] . (23)

Using the decomposition in Eq. (14), by independence
of the terms

E

[(
ȳw
)3] = γ

⎡

⎣
q−1∑

t=1

(
W 1t)3 +

n∑

t=q

(
W (t−q+1)t

)3

+
n+q−1∑

t=n+1

(
W (t−q+1)n

)3
⎤

⎦ .

(24)

Combining results from Eqs. (15), (21), and (24), we
arrive at an expression for C2 given by

C2(n, q,w) = 1 − 3
q

n∑

t,s=1
|t−s|<q

wtws(q − |t − s|)

+ 2
q

⎡

⎣
q−1∑

t=1

(
W 1t)3+

n∑

t=q

(
W (t−q+1)t

)3+
n+q−1∑

t=n+1

(
W (t−q+1)n

)3
⎤

⎦.

(25)

In the case of uniform weights wt = 1/n, the terms in
this expression simplify to

n∑

t,s=1|t−s|<q

wtws(q − |t − s|) = q
n

+ 2
n2

q−1∑

t=1
(n − t)(q − t)

= q
3n2

(
1 + 3nq − q2

)

(26)

q−1∑

t=1

(
W 1t)3 +

n∑

t=q

(
W (t−q+1)t

)3 +
n+q−1∑

t=n+1

(
W (t−q+1)n

)3

= 1
n3

⎡

⎣
q−1∑

t=1
t3+

n∑

t=q
q3+

n+q−1∑

t=n+1
(n − t + q)3

⎤

⎦

(27)

= q2

2n3
(
1 + 2nq − q2

)
, (28)

which yields a simple form for C2 given by

C2(n, q,w) = (n − q + 1)(n − q)(n − q − 1)
n3

. (29)

We finally note that it is possible to derive a closed
form expression for C2 in the case of exponential weights
that were previously considered for the variance estima-
tor; however, the expression is quite lengthy and we omit
it here but it is available upon request. Finally, we turn to
a simulation in order to understand for what parameter
pairs (n, q) the effects of the unbiased skewness estimator
are most significant.

Empirical studies and results
Wenow develop a simulation to compare the relative error
of the uniformly weighted unbiased skewness estimator
γ̂y and the standard unbiased sample skewness estimator
whichmay be found in Zwillinger and Kokoska (2000).We
first construct a dataset of end of day simple returns calcu-
lated from closing prices for the SPY exchange traded fund
from January 1, 2012, to December 31, 2016. This was
achieved using Bloomberg’s Python API and an associated
wrapper package named tia. We downloaded historical
end of day closing prices identified with Bloomberg’s
PX_LAST field that are both split and dividend adjusted.
This time series was fully populated with data, and hence,
there was no need to fill in missing values.
Next, we fit a model distribution to this data in order to

establish a framework to test the weighted unbiased skew-
ness and kurtosis estimators in a setting where the true
values of these statistics are known which closely approx-
imates actual market data. To this end, we let X denote a
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skew normal distribution whose probability density func-
tion is given by

p(x; a, b, c) = 2
b
φ

(
x − a
b

)
�

(
c
x − a
b

)
, (30)

where here φ and � are the probability and cumulative
distribution functions of a standard normal random vari-
able and b > 0. The skew normal distribution has mean μ

and variance σ 2 defined by

μ = a + bd
√

2
π
,

σ 2 = b2
(
1 − 2d2

π

)
, where d = c√

1 + c2
.

(31)

The normalized skewness γ of this distribution is
given by

γ = Skew(X)

Var(X)3/2
= 4 − π

2
(d

√
2/π)3

(1 − 2d2/π)3/2
. (32)

We fit this distribution to the SPY daily return data using
maximum likelihood estimation. Let the likelihood func-
tion of this model be denoted by L. We find the model
parameters by directly maximizing the log-likelihood
function

â, b̂, ĉ = argmax
a,b,c

lnL = n ln
(
2
b

)

+
n∑

t=1
lnφ

(
xt − a

b

)
+ �

(
c
xt − a

b

) (33)

using a BFGS optimizer developed in Fletcher (1987) and
determine that the best fit parameters are given by â =
0.00640, b̂ = 0.01006, and ĉ = −1.1029, which have asso-
ciated mean, variance, and normalized skewness given
by 4.528 × 10−4, 6.5789 × 10−5, and − 0.1689, respec-
tively. Returns will be drawn from this distribution in
the Monte Carlo simulation considered below. Specifi-
cally, this simulation consists of sampling n values from
the MLE distribution, computing the q-period overlap-
ping returns of these time series, then calculating the
normalized unbiased sample skewness γ̃s (see Zwillinger
and Kokoska (2000)) and the normalized unbiased skew-
ness γ̃y with uniform weights given by γ̃y = γ̂y/σ̂ 3

y . We
then compute the relative error |γ̃s − γ̃y|/γ̃y, between the
different estimators for each simulation, repeat the above
process 10,000 times, and display the mean percentage
errors in Table 1 for distinct (n, q) pairs.
We omit cases where the number of overlapping returns

n − q ≤ q, and first note that as the sample size increases,
the error between the two estimators decreases for any
fixed q value. However, when q/n is relatively large, say
greater than 5%, then there are significant differences
between the two estimators.

Next, we explore several weighting schemes described
in Andrews (1991) which are widely used for covariance
matrix estimation in the presence of heteroskedastic-
ity and autocorrelation. Specifically, we consider weights
constructed by Bartlett (Oppenheim et al. 1999), Parzen
(White 1980), Tukey-Hamming (Blackman and Tukey
1958), and the Quadratic Spectral weights of Priestley
(1962) and Epanechnikov (1969). These weights are
defined in terms of a kernel function k(·) and are given by
wt = k(bt/T) where T is a bandwidth parameter and b is
a scaling constant in Zeileis (2004) and Zwillinger (2000).
There are many references that study the problem of opti-
mal bandwidth selection c.f. (Lazarus et al. 2017; Newey
and West 1994; Stock and Watson 2011; Wooldridge
2006); however, we are interested in constructing rea-
sonable weighting schemes to place importance on more
recent over prior data. We found that setting the band-
width to the sample size and b = 1.2 achieves this aim.
In Fig. 1, we plot the kernel functions associated with

these weighting schemes given in Andrews (1991) which
are defined by

kBT (x) =
{
1 − |x| |x| ≤ 1
0 |x| > 1, (34)

kPR(x) =
⎧
⎨

⎩

1 − 6x2 + 6|x|3 |x| ≤ 1/2
2(1 − |x|)3 1/2 ≤ |x| ≤ 1
0 |x| > 1,

(35)

kTH(x) =
{

(1 + cos(πx))/2 |x| ≤ 1
0 |x| > 1, (36)

kQS(x) = 25
12π2x2

(
sin(6πx/5)
6πx/5

− cos(6πx/5)
)
. (37)

Note that when using weighted estimators, one effec-
tively reduces the original sample size. For example, in
the extreme case of binary zero or one valued weights,
only the weights with value one contribute to the esti-
mator which reduces the sample size to the percentage
of one valued weights. In this example, we can find the
percentage sample size reduction by approximating the

Table 1 Mean relative percentage errors between the
normalized unbiased sample skewness γ̃s and the normalized
unbiased skewness γ̃y for varying sample sizes n = 32, . . . , 16384,
and overlapping return periods q = 2, . . . , 128

n/q 2 4 8 16 32 64 128

32 14.24 33.14 68.01 * * * *

64 7.08 16.55 35.36 69.79 * * *

128 3.53 8.25 17.71 36.47 70.67 * *

256 1.76 4.11 8.83 18.29 37.03 71.12 *

512 0.88 2.05 4.41 9.12 18.58 37.31 71.34

1024 0.44 1.03 2.20 4.55 9.27 18.72 37.45

16384 0.03 0.06 0.14 0.28 0.58 1.16 2.34
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Fig. 1 Plot of the unnormalized HAC kernel functions kBT , kPR , kTK , kQS and the uniform kernel

area under each weight curve. In reference to the uniform
weights which we take to have normalized area of 1, the
HAC weights effectively reduce the sample size by PR:
31%, BT,TK: 41%, and QS: 54% so that uniform weights
have approximately two to three times the sample size of
these weighting schemes.
Next, we examine how estimation of the unbiased

weighted standard deviation and skewness estimators
varies as a function of the overlapping return period
q, sample size n, and weighting scheme using the SPY
dataset previously described. We consider overlapping
return periods of 5, 21, and 63 sample points which cor-
respond to weekly, monthly, and quarterly aggregation
windows for our example daily return data. Next, we trun-
cate the sample size to 256, 512, and 1024 data points
which roughly correspond to 1, 2, and 5-year time periods,
using a trailing truncation window on the SPY returns.
Estimation results are presented in Table 2 where over-

lapping return standard deviations are displayed as per-
centages. We first note that estimates for uniform weights
tend to be outliers as they include two to three times
the effective sample size as the other weighting schemes.
Next, note that overall standard deviation values are great-
est in the n = 512 case, slightly lower for n = 256, and
considerably lower for n = 1024. This is due to the histor-
ical volatility of the S&P 500 being relatively high during
the mid 2015 to early 2016 time period and lower in prior
years over the five year window being considered. One
may also note that the overlapping return distribution
becomes increasingly negatively skewed as a result.

Finally, we compare how skewness estimation varies
over time for different weighting schemes. In particular,
we consider a 4-year window from 1/1/2012 to 1/1/2016
and estimate the unbiased skewness using a 252-day look-
back period for each of the HAC estimators and a 126-day
lookback period for the uniformly weighted estimator
which is selected to ensure that the sample sizes are on
par with one another. This procedure is carried out on a
rolling basis, and results are plotted in Fig. 2.
We note that the general forms of the time series in Fig. 2

tend to be similar for the majority of dates displayed. The
HAC weighted estimators are more reactive than the uni-
form estimator and do not exhibit single day jumps that
are as large in magnitude as the HAC uniform estimator.

Discussion and conclusions
In summary, we have derived closed form expressions for
weighted unbiased variance and skewness estimators. We
also developed simplified expressions for these estima-
tors in the case of exponential weights for the variance
estimator and uniform weights for both estimators. The
differences between the standard unbiased sample skew-
ness and new normalized unbiased skewness estimators
were demonstrated to be significant in the case of skew-
ness estimation for SPY end of day return data for HAC
weighting schemes.
We note that as in Bod et al. (2002) and Lo and

MacKinlay (1988), we assume returns satisfy the ran-
dom walk version of the martingale hypothesis which
generally does not hold for financial time series. An
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Table 2 Comparison of unbiased overlapping return standard deviation and skewness estimators as a function of weighting scheme,
sample size n, and overlapping return period q

n = 256 n = 512 n = 1024

q = 5 q = 21 q = 63 q = 5 q = 21 q = 63 q = 5 q = 21 q = 63

Std(%)

U 1.764 3.146 4.086 1.885 3.459 5.225 1.729 3.130 4.387

BT 2.167 3.810 4.359 1.999 3.519 5.330 1.611 2.847 3.845

PR 2.409 4.321 4.679 1.894 3.196 4.963 1.512 2.634 3.260

TK 2.215 3.892 4.388 1.997 3.480 5.328 1.556 2.730 3.501

QS 2.038 3.561 4.246 2.001 3.555 5.380 1.648 2.930 3.978

Skewness

U − 0.489 − 0.296 0.356 − 1.038 − 0.356 − 0.467 − 0.858 − 0.400 − 0.866

BT − 0.612 − 0.525 0.299 − 1.200 − 0.310 − 0.343 − 0.748 − 0.401 − 0.985

PR − 0.582 − 0.752 0.294 − 1.355 − 0.387 − 0.668 − 0.508 − 0.335 − 0.488

TK − 0.616 − 0.623 0.334 − 1.280 − 0.308 − 0.316 − 0.610 − 0.328 − 0.801

QS − 0.601 − 0.446 0.318 − 1.184 − 0.298 − 0.318 − 0.791 − 0.401 − 0.986

Here, we use the following abbreviations for different kernel based weighting schemes: U uniform, BT Bartlett , PR Parzen, TK Tukey-Hanning, and QS Quadratic Spectral

interesting future application of the skewness estima-
tor would be to develop a hypothesis test for this
assumption which may compliment the results in Lo
and MacKinlay (1988). For additional future work, it
would be of interest to consider as in Kluitman and
Franses (2002) analogues of the weighted unbiased vari-
ance and skewness estimators under the assumption that
the return process satisfies an AR(1), MA(1) or more

general time series model. This will require repeating t
he above derivations and retaining terms of the form
E [rtrs] and E [rtrsrk] for t �= s �= k which are no
longer trivial but depend on the underlying model one
assumes for the return process. Then, one could fit
such models to market data and compare values of the
two estimators. We anticipate the estimator will strongly
depend on the sign of the AR(1) lag parameter and the

Fig. 2 Rolling n = 252 day overlapping return unbiased skewness for HAC weighting schemes and a n = 126 lookback period for uniform weights
with a q = 21 overlapping period for SPY daily returns
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white noise parameter of the MA(1) model as shown in
Kluitman and Franses (2002) but leave this for a future
study.

Acknowledgements
We thank the referees for their comments which greatly improved both the
language and content of this article. ST would like to thank Michael Ehrlich for
comments that improved the exposition of this article.

Authors’ contributions
ST developed and derived the main estimators in this article. MF performed
the literature review, simulations, and a verification of calculations. Both
authors read and approved the final manuscript.

Authors’ information
ST is an Assistant Prof. of Finance at the New Jersey Institute of Technology.
MF is an Assistant Prof. of Accounting at the New Jersey Institute of
Technology. Both ST and MF are new faculty members in the first years of their
academic career.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Received: 16 November 2017 Accepted: 1 June 2018

References
Andrews, DWK (1991). Heteroskedasticity and Autocorrelation Consistent

Covariance Matrix Estimation. Econometrica, 53(3), 817–858.
Bod, P, Blitz, D, Franses, PH, Kluitman, R (2002). An Unbiased Variance Estimator

for Overlapping Returns. Applied Financial Economics, 12(3), 155–158.
Broto, C (2004). Estimation methods for stochastic volatility models: a survey.

Journal of Economic Surveys, 18(5), 613–649.
Amélie, C, & Olivier, D (2009). Variance ratio tests of random walk: An overview.

Journal of Economic Surveys, 3, 503–527.
Dunis, C, & Keller, A (1995). Efficiency Tests with Overlapping Data: An

Application to the Currency Option Market. European Journal of Finance, 1,
345–66.

Epanechnikov, VA (1969). Non-parametric Estimation of a Multivariate
Probability Density. Theory of Probability and Its Applications, 14, 153–158.

Fama, E (1965). The behavior of stock prices. Journal of Business, 38, 34–105.
Fletcher, R (1987). Practical Methods of Optimization.Wiley. https://www.

amazon.com/Practical-Methods-Optimization-R-Fletcher/dp/0471494631.
Fong, WM, Koh, SK, Ouliaris, S (1997). Joint variance-ratio tests of the

martingale hypothesis for exchange rates. Journal of Business and Economic
Statistics, 15, 51–59.

Grigoletto, M, & Lisi, F (2006). Looking for skewness in financial time series.
Working Paper Series, 7. http://paduaresearch.cab.unipd.it/7094/1/
2006_7_20070123084924.pdf.

Hansen, L, & Hodrick, RJ (1980). Forward exchange rates as optimal predictors
of future spot rates: an econometric analysis. Journal of Political Economy,
88, 829–853.

Jackwerth, JC (2000). Recovering Risk Aversion from Options Prices and
Realized Returns. Review of Financial Studies, 13(2), 433–451.

Xu, J (2007). Price Convexity and Skewness. The Journal of Finance, 62(5),
2521–2552.

Kluitman, R, & Franses, PH (2002). Estimating volatility on overlapping returns
when returns are autocorrelated. Applied Mathematical Finance, 9(3),
179–188.

Lazarus, E, Lewis, DJ, Stock, JH, Watson, MW (2017). HAR Inference:
Recommendations for Practice. JBES Invited Paper. https://scholar.harvard.
edu/elazarus/publications/har-inference-recommendationspractice-jbes-
invited-paper.

Liu, CY, & He, J (1991). A variance ratio test of random walks in foreign
exchange rates. Journal of Finance, 46, 773–785.

Lo, AW, & MacKinlay, AC (1988). Stock Market Prices do not Follow Random
Walks; Evidence from a Simple Specification Test. Review of Financial
Studies, 1, 41–66.

Mandelbrot, B (1963). The variation of certain speculative prices. Journal of
Business, 36(4), 394–419. https://web.williams.edu/Mathematics/sjmiller/public
_html/341Fa09/econ/Mandelbroit_VariationCertainSpeculativePrices.pdf.

Müller, UA (1993). Statistics of variables observed over overlapping intervals.
https://ideas.repec.org/p/wop/olaswp/_010.html.

Newey, WK, & West, KD (1994). Automatic Lag Selection in Covariance Matrix
Estimation. Review of Economic Studies, 61, 631–653.

Oppenheim, AV, Schafer, RV, Buck, JR (1999). Discrete-Time Signal Processing.
Prentice-Hall Signal Processing Series. https://www.amazon.com/Discrete-
Time-Signal-Processing-3rd-Prentice-Hall/dp/0131988425.

Priestley, MB (1962). Basic Considerations in the Estimation of Spectra.
Technometrics, 4, 551–564.

Longerstaey, J, & Spencer, M (1996). RiskMetrics Technical Document.
Fourth Edition. https://www.msci.com/documents/10199/5915b101-4206-
4ba0-aee2-3449d5c7e95a.

Stock, JH, & Watson, MW (2011). Introduction to Econometrics Third Edition.
Addison-Wesley. Pearson Education Limited, Edinburgh Gate, Harlow,
Essex CM20 2JE, England.

Tsay, RS (2010). Analysis of Financial Time Series. 111 River St. Hoboken: Wiley.
Tsokos, CP (2010). K-th Moving, Weighted and Exponential Moving Average

for Time Series Forecasting Models. European Journal of Pure and Applied
Mathematics, 3(3), 406–416.

Blackman, RB, & Tukey, JW (1958). Themeasurement of power spectra. Dover:
Dover Publications.

White, H (1980). A Heteroskedasticity-Consistent Covariance Matrix Estimator
and a Direct Test of Heteroskedasticity. Econometrica, 48, 817–838.

Wong, W (2016). Skewness and Kurtosis Ratio Tests: With Applications to
Multiperiod Tail Risk Analysis. Cardiff EconomicsWorking Papers. https://
www.econstor.eu/handle/10419/174121.

Wooldridge, JM (2006). Introductory Econometrics: A Modern Approach Third
Edition.Mason: Thomson.

Wen, F, & Yang, X (2009). Skewness of Return Distribution and Coefficient of
Risk Premium. Jrl Syst Sci & Complexity, 22, 360–371.

Zeileis, A (2004). Econometric Computing with HC and HAC Covariance Matrix
Estimators. Journal of Statistical Software, 11(10), 1–17.

Zwillinger, D, & Kokoska, S (2000). CRC Standard Probability and Statistics Tables
and Formulae. Boca Raton: Chapman & Hall.

https://www.amazon.com/Practical-Methods-Optimization-R-Fletcher/dp/0471494631
https://www.amazon.com/Practical-Methods-Optimization-R-Fletcher/dp/0471494631
http://paduaresearch.cab.unipd.it/7094/1/2006_7_20070123084924.pdf
http://paduaresearch.cab.unipd.it/7094/1/2006_7_20070123084924.pdf
https://scholar.harvard.edu/elazarus/publications/har-inference-recommendationspractice- jbes-invited-paper
https://scholar.harvard.edu/elazarus/publications/har-inference-recommendationspractice- jbes-invited-paper
https://scholar.harvard.edu/elazarus/publications/har-inference-recommendationspractice- jbes-invited-paper
https://web.williams.edu/Mathematics/sjmiller/public_html/341Fa09/econ/Mandelbroit_VariationCertainSpeculativePrices.pdf
https://web.williams.edu/Mathematics/sjmiller/public_html/341Fa09/econ/Mandelbroit_VariationCertainSpeculativePrices.pdf
https://ideas.repec.org/p/wop/olaswp/_010.html
https://www.amazon.com/Discrete-Time-Signal-Processing- 3rd-Prentice-Hall/dp/0131988425
https://www.amazon.com/Discrete-Time-Signal-Processing- 3rd-Prentice-Hall/dp/0131988425
https://www.msci.com/documents/10199/5915b101-4206-4ba0-aee2-3449d5c7e95a
https://www.msci.com/documents/10199/5915b101-4206-4ba0-aee2-3449d5c7e95a
https://www.econstor.eu/handle/10419/174121
https://www.econstor.eu/handle/10419/174121

	Abstract
	Keywords

	Introduction
	Methodology
	Empirical studies and results
	Discussion and conclusions
	Acknowledgements
	Authors' contributions
	Authors' information
	Competing interests
	Publisher's Note
	References

