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Abstract

The implementation of a lockdown to control the spread of the COVID-19 pandemic has led to a strong economic
and political debate in several countries. This makes it crucial to shed light on the actual benefits of such kind of
policy. To this purpose, we focus on the Swiss lockdown during the first wave of COVID-19 infections and estimate the
number of potentially saved lives. To predict the number of deaths in the absence of any restrictive measure, we
develop a novel age-structured SIRDC model which accounts for age-specific endogenous behavioral responses and
for seasonal patterns in the spread of the virus. Including the additional fatalities which would have materialized
because of the shortage of healthcare resources, our estimates suggest that the lockdown prevented more than
11,200 deaths between March and the beginning of September 2020.

Keywords: COVID-19, Lockdown, Saved lives, SIRDC model, SIR model, Behavioral responses

JEL Classification: I18; D91; H12

1 Introduction
Since the end of 2019, all countries in the world have expe-
rienced a rapid spread of the COVID-19 epidemic, which
has required the fast development of appropriate policy
responses to face the increasing number of infections,
hospitalizations, and deaths. Themajority of governments
have therefore introduced different types of measures to
reduce contacts among people. Such interventions have
included bans on public events and gatherings of people
and closures of national and regional borders, as well as
school closures and the interruption of all non-essential
business activities. These policies have been at the center
of a heated debate, mainly due to their high economic and
social costs.
A lockdown may have substantial negative effects on

economic activities, leading to business disruption, job
losses, and earnings reductions. Recent surveys reveal that
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at least 42% of young people experienced a deterioration
of their career prospects and serious income losses (ILO,
2020). Such detrimental consequences in terms of learn-
ing outcomes and disposable income are also reverberated
in lower levels of well-being and worse mental health
conditions (OECD, 2020b; Cutler and Summers, 2020).
The aim of this paper is to evaluate the number of lives

which a lockdown can potentially save. Given the eco-
nomic costs implied by this policy, a reliable estimate of
its benefits is crucial to understand whether its adop-
tion is actually optimal (Gros, 2020). In order to address
our research question, we focus on the lockdown imple-
mented in Switzerland in response to the first wave of
COVID-19 infections. To the best of our knowledge, the
existing literature has not provided yet an estimate of the
lives saved by the Swiss lockdown in spring 2020.
Taking advantage of a unique dataset about the uni-

verse of individuals who tested positive for the disease,
we estimate the number of potentially saved lives by
developing a novel SIRDC model, which allows to pre-
dict the daily amount of infections, hospitalizations and
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deaths for different age groups in the absence of lockdown.
In particular, our model accounts for seasonal patterns
characterizing the transmissibility of the virus (Atkeson,
2021) and includes age-specific endogenous behavioral
responses (Cochrane, 2020). More specifically, we assume
that not only individuals respond to changes in the death
rate of their age group, but they are also altruistic and
care about the well-being of other subjects. A basic SIR
model, instead, would lead to overstate the impact of the
policy right because it does not consider that citizens
spontaneously reduce their contacts even in the absence
of government interventions. To obtain a reliable esti-
mate of saved lives, we also take into account potential
overflow deaths due to hospital overcrowding. This is par-
ticularly relevant if we consider that the impossibility of
providing proper hospital treatments, especially in inten-
sive care units (ICU), results in a higher mortality risk also
for younger subjects.
Our SIRDC model suggests that the absence of any pol-

icy intervention in Switzerland would have resulted into
approximately 11,500 deaths by September 1, plus 1500
additional casualties due to the lack of available beds in
intensive care units. Relying on a basic SIR model, instead,
we would have predicted roughly 65,000 deaths, plus
62,000 fatalities due to the limited availability of health-
care resources. Such estimates would be in line with the
simulations performed by the Imperial College COVID-
19 Response Team. Neglecting hospital overcrowding,
behavioral responses and seasonality, indeed, Flaxman et
al. (2020) conclude that Switzerland would have reached
54,000 deaths by May 4. Our basic SIR model would
deliver higher estimates only because we consider a time
horizon which goes beyond May 4 and reaches the end of
May, when the contagion fades out.
Our work is related to a growing literature concern-

ing the impact of restrictive measures which limit the
spread of an epidemic, especially after the outbreak of
COVID-19. For instance, Zhang et al. (2020) show that
contacts among people were reduced by more than seven
times in China thanks to physical distancing policies,
while Fang et al. (2020) document that the lockdown in
Wuhan reduced the number of potential infections by
almost 65%. Some studies have also attempted an eval-
uation of the monetary benefits associated to the lives
saved by the lockdown (e.g., Greenstone and Nigam,
2020; Thunström et al., 2020). However, these analyses
often rely on simulations based on early limited data
(Verity et al., 2020).
This work contributes to the current literature about

the COVID-19 pandemic from both amethodological and
an empirical point of view. First, we develop a novel age-
structured SIRDC model that accounts for seasonal pat-
terns and age-specific endogenous behavioral responses,
including both an egoistic and an altruistic component.

Second, we provide an estimate of the severity of COVID-
19 based on rich data concerning the entire period of the
first wave of infections in Switzerland. Third, to the best
of our knowledge, this is the first estimate of the number
of lives saved by the first Swiss lockdown in spring 2020.
The rest of the paper is organized as follows. Section 2

introduces the Swiss context and the policies imple-
mented during the first wave of the COVID-19 pandemic,
betweenMarch and the beginning of September. Section 3
describes the data. Section 4 presents our model and the
estimates of the potential number of deaths in the absence
of containment measures. Section 5 focuses on overflow
deaths due to hospital overcrowding. Section 6 concludes.

2 Background
After the outbreak of the COVID-19 epidemic in China
and in several European countries, at the end of February
2020 Switzerland started facing the spread of the virus,
with an increasing number of infections. As a conse-
quence, massive public health non-pharmaceutical inter-
ventions became the only viable strategy to limit the
contagion.
Switzerland is a Confederation made up of 26 inde-

pendent and sovereign cantons, so interventions can be
planned and implemented both at national and cantonal
levels. Indeed, some restrictive measures were already
introduced, canceling several public events, on February
26 in the cantons at the border with Italy and France,
where the first COVID-19 cases were reported1. Mean-
while, the first containment measure adopted at the
national level by the federal government on February 28
was the banning of any event involving more than 1000
participants.
However, because of the rapidly increasing number of

infections throughout the country, the Swiss federal gov-
ernment intervened with more stringent measures. In
particular, on March 17, schools and non-essential eco-
nomic activities were closed, while gatherings of more
than five people were forbidden starting from March 20.
Nevertheless, differently from other countries like Italy,
Switzerland did not opt for a strict lockdown, with the
general requirement to stay at home.
Although economic losses were expected to be severe

also in a country with a high GDP per capita (World
Bank, 2020) andHumanDevelopment Index score (United
Nations, 2020), the the Federal Council (2020) aimed at
avoiding an unsustainable burden in terms of infections
and lost lives. Such concern was particularly reasonable
considering that the Swiss population has increasingly
aged over the last decades and more than 20% of people
are older than 65, hence far more likely to develop serious

1The first official COVID-19 case in Switzerland was reported on February 25
in Ticino, the most southern canton at the border with Italy.
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illnesses or eventually die from COVID-19. In light of the
constrained availability of healthcare facilities, moreover,
it was necessary to prevent a scenario in which access to
life-saving treatments would have been denied to patients
in need.
After reaching a peak during the first half of April, the

number of infections and, consequently, deaths started to
exhibit a decreasing pattern. As a result, lockdown mea-
sures were progressively loosened. On April 27, several
shops opened again, while schools restarted on May 11
and the activities in the majority of offices and facilities
could take place again from June 8.

3 Data
Our analysis is based on individual-level data released by
the Federal Office of Public Health (FOPH) about the uni-
verse of individuals who tested positive for COVID-19 in
Switzerland between February 24 and May 15, during the
first wave of the epidemic2. For each positive case in a
specific Swiss canton on a certain day, this dataset con-
tains information about age and gender, as well as the date
of the onset of the first symptoms. Furthermore, these
data also report whether and when an individual was hos-
pitalized, specifying if intensive care was required and
providing the exact days on which the patient entered
and left the intensive care unit. Finally, we know whether
and when the person eventually died. Table 1 summarizes
these data.
In spite of relevant testing efforts, however, during the

first wave of the pandemic, asymptomatic cases were
largely undetected. Because of the limited availability of
resources, only people with severe symptoms were tested.
This is the reason why we derive information about
seroprevalence from the study conducted in Geneva by
Stringhini et al. (2020). In this way, it is possible to under-
stand the extent to which younger subjects, who tend to
be under-represented in the official data, were actually
affected by the spread of the disease.
These data are complemented by the yearly cantonal

statistics provided by the Federal Statistical Office about
the resident population and the weekly number of deaths
by age. As we will discuss in Section 4, we also exploit the
Value of Statistical Life (VSL) to model the age-specific
individual behavioral responses. The average VSL for the
Swiss population is derived from the estimates released
by the Federal Office for Spatial Development (2019)3.
To obtain an age-specific VSL4, we rescale the estimates
2In addition, we exploit the number of deaths in each age group by the first
week of September.
3The most updated value refers to year 2017 and amounts to 6.7 million Swiss
Francs. More information about the Swiss VSL is provided by Ecoplan (2016).
4The VSL should exhibit a hump-shaped relationship with age (Aldy and
Viscusi, 2008). Indeed, the VSL reflects not only life expectancy, but also other
age-dependent characteristics such as education and career prospects. Hence,
after increasing with age, the VSL starts declining when the individual turns
approximately 30.

obtained by Murphy and Topel (2006) in the USA by
means of the Swiss average value.
As far as the healthcare supply in Switzerland is con-

cerned, we rely on several sources. The Organization for
Economic Cooperation and Development (OECD) pro-
vides indicators about the number of total and acute
care hospital beds per 1000 inhabitants, and the lat-
est statistics available for Switzerland are for year 2018
(OECD, 2020a). We also refer to Rhodes et al. (2012),
who estimated the number of intensive care beds in sev-
eral European countries including Switzerland, expressing
them as a percentage of total acute care beds. Besides,
we rely on the information released by the Swiss Soci-
ety of Intensive Care Medicine about the percentage of
healthcare resources which could be exclusively allocated
to COVID-19 patients. In order to derive the number
of daily available beds, finally, we need statistics about
the average length of stay in hospital and intensive care
for COVID-19 patients. To this purpose, we exploit the
FOPH dataset to compute the average number of days
spent in ICU by these patients. In the case of indi-
viduals who were hospitalized but did not enter ICU,
instead, FOPH data provide only the day of entrance, so
we take advantage of the statistics available in Pellaud et
al. (2020) about hospitalizations related to COVID-19 in
Fribourg.
To estimate the number of overflow deaths due

to hospital overcrowding, we finally need information
about the mortality rates associated with being admit-
ted to or rejected from hospital or ICU. While FOPH
data allow to compute mortality rates for COVID-
19 patients who received appropriate care, the cor-
responding estimates for rejected individuals will be
taken from the literature (Greenstone and Nigam, 2020;
Rojas, 2020), since Switzerland never faced the problem
of overcrowded hospitals during the first wave of the
pandemic.

4 An estimate of potential direct deaths
The present section describes our estimates of the poten-
tial number of avoided direct deaths thanks to contain-
ment measures in Switzerland. The term “direct” refers
to the fact that these estimates do not include the addi-
tional potential deaths due to hospital overcrowding,
which will be computed in the next section. We now
proceed with the following steps. First, we focus on the
initial phase of the epidemic, when the growth of infec-
tions was not influenced yet by any restriction, to deter-
mine the parameters which allow to predict the subse-
quent spread of the contagion in a counterfactual scenario
without mitigation policies. Second, we develop a novel
SIRDC model to estimate the potential number of infec-
tions and the corresponding deaths between March and
the beginning of September. To this purpose, we use an
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Table 1 Descriptive statistics by age group (by May 15)

Age groups

0–9 10–19 20–29 30–39 40–49 50–64 65–79 80+ Total

Panel A: positive cases

Number of cases 153 862 3801 4106 4768 8318 4393 4059 30460

Share of total cases 0.50% 2.83% 12.48% 13.48% 15.65% 27.31% 14.42% 13.33% 100%

Share of women 47.02% 58.58% 59.73% 57.20% 57.19% 50.29% 44.81% 60.70% 54.30%

Panel B: hospitalizations and ICU

Hospitalizations 26 33 110 136 258 866 1275 1187 3891

Hospitalizations/cases 16.99% 3.83% 2.89% 3.31% 5.41% 10.41% 29.02% 29.24% 12.77%

ICU 1 1 5 15 27 132 239 78 498

ICU/cases 0.65% 0.12% 0.13% 0.36% 0.57% 1.59% 5.44% 1.92% 1.63%

Average days in ICU – – – 4.33 10.50 16.25 11.41 8.66 11.30

Panel C: deaths

Number of deaths 0 0 0 5 4 71 403 1112 1,595

Deaths/cases 0.00% 0.00% 0.00% 0.12% 0.08% 0.85% 9.17% 27.39% 5.24%

Share of women 0.00% 0.00% 0.00% 40.00% 25.00% 25.35% 31.27% 47.48% 42.32%

Note: This table summarizes the individual-level data released by the Federal Office of Public Health, which cover the period between February 24 and May 15, 2020. Panel A
displays the number of officially reported positive cases, as well as the share of total cases in each age group and the share of women. Panel B shows the number of patients
requiring hospitalization or intensive care in each age group, also expressed as a share of the total number of cases in the corresponding age group. In case of access to
intensive care units, the data even report the exact dates of entry and exit, allowing to compute the average length of stay. Finally, panel C displays the number of
COVID-related deaths in each age group, indicating the corresponding case fatality rate and the share of total fatalities occurred among women

age-specific imputed infection fatality rate derived from
the data5.
However, before proceeding with our analysis, we need

to address a preliminary issue, which requires an adjust-
ment of the data. Indeed, older people, who aremore likely
to exhibit severe symptoms, tend to be over-represented
among positive cases, while younger (and often asymp-
tomatic) individuals are systematically under-reported.
Therefore, the total number of predicted infections in the
counterfactual scenario cannot be attributed to the differ-
ent age groups on the basis of the shares retrieved from
the original data.
To circumvent this issue, we exploit the results obtained

by Stringhini et al. (2020) from the seroprevalence tests
conducted in Geneva. They not only estimate the over-
all seroprevalence in the population in each of the
5 weeks between April 6 and May 9, but they also

5In order to check the robustness of our results, we also estimate the
age-specific infection fatality rate of COVID-19 using an alternative approach
based on a Bayesian model. See Appendix 3 for more details.

compute how the relative risk varies depending on age.
After computing the average value of seroprevalence over
the 5 weeks, using the number of observations in each
week as a weight, we exploit the specific relative risks
to obtain the shares of people belonging to different age
groups who have been actually infected in Geneva.
At this point, for each age group, we compute the ratio

between the actual share of infected people in Geneva
and the corresponding share of infected individuals in
our data. Such ratio represents an age group-specific fac-
tor ka measuring the extent to which each age group
in the canton of Geneva is under-represented in the
data (see Table 2). Since testing criteria in Switzerland
are defined centrally by the FOPH, it is reasonable to
assume that the factor ka computed for Geneva can be
applied to all the other cantons. Hence, after multiply-
ing the number of reported cases in each age group by
the corresponding adjustment factor ka, the issue of over-
or under-representation of different groups is overcome
(Table 3).
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Table 2 Adjustment factors

Age Estimated Adjustment

seroprevalence factor ka

0–9 0.02808 44.908633

10–19 0.07546 30.858332

20–49 0.08774 7.7625095

50–64 0.06931 5.0841335

65+ 0.04387 3.0066347

Note: This table reports the values of seroprevalence in different age groups inferred
from the results of Stringhini et al. (2020) and the coefficients which should be
multiplied by the official number of reported positive cases to predict the actual
number of infections

4.1 Estimating R0 during the early stage of the epidemic
As a first step, we estimate the basic reproduction number
(R0) of the disease, which reveals the number of individ-
uals who are infected by a single positive person during
the initial phase of the epidemic6, when the population
consists almost exclusively of susceptible individuals and
the cumulative number of cases grows exponentially until
some containment measures are introduced (Muggeo et
al., 2020; Daddi and Giavalisco, 2020; Massad et al., 2005).
The starting date of the epidemic is identified as the

first day when an incidence of at least 20 cases of COVID-
19 per 100,000 people is registered after the adjustment
described above. The duration of the initial phase, before
the materialization of any effect due to containment mea-
sures, is computed by estimating when the linear growth
of the logarithm of the cumulative number of infections
changes slope. In practice, we estimate a hockey stick
regression model that allows to identify the breakpoint
date at which the slope of this linear relationship changes7,
as also displayed in Fig. 1:

log (E[Yt] ) = β0 + β1t (1)

where Yt is the cumulative number of infections at day
t = 1, 2, ..., n, after we have normalized the first day of the
epidemic as day 1.
Table 4 reports the breakpoint dates estimated both for

Switzerland and its seven macro-regions. Since the fed-
eral lockdown was announced on March 16, its effects are
expected to be observed at most 10 days later, considering
that the incubation period for COVID-19 amounts to 5
days and other 4.5 days pass on average between the onset
of the first symptoms and the test. This timing is exactly
reflected in our estimates, with an anticipated effect in
French cantons and in Ticino, where some restrictions
were introduced earlier.

6If R0 = 1, the number of infected people remains constant; if R0 < 1, the
number of infected people decreases; if R0 > 1, the number of infected people
increases.
7If the cumulative number of infections grows exponentially during the early
stage of the epidemic, the log of the cumulative number of infections exhibits
a linear growth over time.

In light of these results, it is finally possible to compute
the value of R0 using the following equation (Massad et al.,
2005; Daddi and Giavalisco, 2020):

Yb = Y1 ∗ e(R0−1)γ t (2)

Here, Yb is the cumulative number of infections on the
breakpoint date, Y1 is the cumulative number of infections
on the first day, while γ represents the resolving rate, so
that 1

γ
is the average infectious period during which an

individual can transmit the virus to others. Such period
can be expected to be similar to the incubation period and,
indeed, according to Almeshal et al. (2020), it amounts
to 5.8 days. Exploiting this value, we derive the estimates
of R0 reported in Table 4. Given that the basic reproduc-
tion number R0 is defined as the product between the
contact rate β and the average infectious period 1/γ , we
can finally retrieve the value of β , which captures how the
infection is transferred.
Table 4 reveals the existence of remarkable differences

across Swiss regions in the intensity of the spread of the
epidemic, which can also be explained by cultural hetero-
geneity (Mazzonna, 2020). A separate analysis of regions,
however, would not allow to take into account the possi-
bility that the contagion also spreads from one region to
another, an aspect of key importance in a country where
the degree of mobility is extremely high. Hence, in order
to avoid underestimating the potential effects of lock-
down measures, in the following sections of the paper we
will rely on the number of infections, hospitalizations and
deaths estimated at the national level.

4.2 Imputed infection fatality rates
Themost widely usedmeasure for the severity of a disease
is the infection fatality rate (IFR), which indicates the pro-
portion of deaths among all infected individuals, includ-
ing those who are asymptomatic or undiagnosed. After
adjusting the data in light of seroprevalence results, we
can actually estimate the whole number of cases in each
age group. Hence, by taking the ratio between the num-
ber of reported deaths and the number of cases within
each age group, we obtain an age group-specific imputed
infection fatality rate IFRa for COVID-198. These esti-
mates will now be exploited to fit our model and derive
the potential number of direct deaths in the absence of
restrictive measures.

4.3 Direct deaths in the absence of restrictions
4.3.1 An age-structured SIRDCmodel with endogenous

behaviors
The values of R0 and β determined above can be now
exploited to fit a model which allows to simulate the

8The value of IFRa is null if no deaths are reported for age group a. The
youngest individual who officially died from COVID-19 in Switzerland by May
15 is aged 31.
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Table 3 Descriptive statistics by age group after adjusting the data (by May 15)

Age groups

0–9 10–19 20–29 30–39 40–49 50–64 65–79 80+ Total

Panel A: positive cases

Number of cases 6871 26507 29366 31733 36911 42203 13181 12189 198961

Share of total cases 3.45% 13.32% 14.76% 15.95% 18.55% 21.21% 6.63% 6.13% 100%

Panel B: hospitalizations and ICU

Hospitalizations 26 33 110 136 258 866 1275 1187 3891

Hospitalizations/cases 0.38% 0.12% 0.37% 0.43% 0.70% 2.05% 9.67% 9.74% 1.96%

ICU 1 1 5 15 27 132 239 78 498

ICU/cases 0.01% 0.00% 0.02% 0.05% 0.07% 0.31% 1.81% 0.64% 0.25%

Average days in ICU – – – 4.33 10.50 16.25 11.41 8.66 11.30

Panel C: deaths

Number of deaths 0 0 0 5 4 71 403 1112 1,595

Deaths/cases 0.00% 0.00% 0.00% 0.02% 0.01% 0.17% 3.06% 9.12% 0.80%

Share of women 0.00% 0.00% 0.00% 40.00% 25.00% 25.35% 31.27% 47.48% 42.32%

Note: This table summarizes the dataset which combines the individual-level data released by the Federal Office of Public Health (February 25–May 15, 2020) and the
seroprevalence results inferred from Stringhini et al. (2020). Panel A displays the number of estimated positive cases, as well as the share of total cases attributed to each age
group. Panel B shows the number of patients requiring hospitalization or intensive care in each age group, also expressed as a share of the total number of cases in the
corresponding age group. In case of access to intensive care units, the data even report the exact dates of entry and exit, allowing to compute the average length of stay.
Finally, panel C displays the number of COVID-related deaths in each age group, indicating the corresponding imputed infection fatality rate and the share of total fatalities
occurred among women

spread of the COVID-19 epidemic in Switzerland in the
absence of any mitigation policy. In particular, our aim is
to improve the estimates which could be derived from a
basic SIR model (see Appendix 1) by considering a more
realistic counterfactual scenario in which people tend to
reduce spontaneously their contacts also in the absence
of any government intervention. Furthermore, following
Atkeson (2021), we are also including in the model an
additional component which accounts for seasonal vari-
ation in the spread of the virus. Indeed, as documented
by the epidemiological literature (e.g., Park et al., 2020),
the transmissibility of the virus changes during the year,
reaching a peak towards the end of January.
As far as the time horizon of our predictions is con-

cerned, we focus on the 180 days between March 5 and
September 1. Indeed, the present analysis is meant to
estimate the benefits associated to the lockdown imple-
mented in response to the first wave of infections. More-
over, such focus allows us to avoid a potential bias in
our estimates arising from factors which changed after
summer and led to the insurgence of the second wave of

infections. However, Appendix 4 also reports the results
of our model when the time horizon is not restricted and
we consider the entire period over which infections and
deaths would occur.
We start from a simple SIRDC model (Villaverde and

Jones, 2020), in which individuals can be in one of five
possible states: Susceptible (S), Infectious (I), Resolving
(R), Dead (D), and reCovered (C). Since we are interested
in estimating how the number of potential infections and
deaths varies with age, we distinguish eight age groups9.
Excluding vital dynamics (i.e., neglecting births and

deaths that are unrelated to the epidemic, see Rowthorn
and Maciejowski, 2020) and taking into account that the
contagion may spread also across age groups, the model is
described by the following system of five ordinary differ-
ential equations:

9To implement this model, we have followed Deforche (2020), but identifying
eight different age groups rather than only two. See Appendix 1 for more
details.
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Fig. 1 (Log) number of cumulative positive cases. Note: This figure shows the evolution over time of the logarithm of the cumulative number of
infections after March 5. The number of cases represented here is the one obtained after adjusting the official number of reported cases in light of
the seroprevalence estimates by Stringhini et al. (2020). The change in the slope which occurs around the 20th day reflects the end of an
exponential growth of cases thanks to the implementation of restrictive measures in the country

dSa
dt

= −β0
∑8

a=1 Ia
∑8

a=1Na
∗ Sa (3)

dIa
dt

= β0
∑8

a=1 Ia
∑8

a=1Na
∗ Sa − γ Ia (4)

dRa
dt

= γ Ia − θRa (5)

dDa
dt

= δaθRa (6)

dCa
dt

= (1 − δa)θRa (7)

with a indicating one of the eight age groups, a ∈
{1, ..., 8}. Na represents the total population belonging to
a given age group, while N represents the total popula-
tion, which does not vary over time since vital dynamics
are here neglected.
The number of subjects in each compartment varies

over time, but the stock across the five states remains
constant:

8∑

a=1
Sa(t) +

8∑

a=1
Ia(t) +

8∑

a=1
Ra(t) +

8∑

a=1
Da(t)

+
8∑

a=1
Ca(t) =

8∑

a=1
Na(t) = N(t) = N

The rate at which susceptible individuals in each age
cohort a become infectious is β0

∑8
a=1 Ia∑8

a=1 Na
∗Sa = β0IS

N . Hence,
it depends on the share of infectious subjects in the total
population, on the value of the contact rate β0, which mir-
rors the speed of the transmission of the disease, and on
the amount of individuals who are still susceptible. Infec-
tiousness resolves at rate γ . Once individuals are no longer
in the state in which they can infect others, they move to
the resolving state. In each period t, then, a constant frac-
tion of individuals (θ ) in every considered age group leaves
the resolving compartment, ending in one of the two final
stages: either dead (with probability δa) or recovered (with
probability (1 − δa))10. These last two states are perma-
nent, that is, once in them, people can no longer change
compartment. We set β0 = 0.3596 and γ = 0.1724, while
δa indicates age-specific mortality rates11. Finally, we set
θ = 0.1. This value reflects the 1

θ
= 10 days which on

average an individual spends with the disease before it
resolves.
The system of differential equations can be recursively

estimated to predict the daily number of people in each
compartment. Since the analysis is performed at the
national level, the initial conditions are represented by the
individuals in each age group and compartment onMarch

10Note that this dynamics collapses to that of a basic SIR model if we
aggregate Ra , Da , and Ca .
11Age-specific mortality rates are the imputed IFRs described in Section 4.2.
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Table 4 Estimates of R0 during the early phase of the epidemic

Region Starting date Breakpoint date R0 β

Lake Geneva 6 March 23 March 2.2939 0.3955

Espace Mittelland 6 March 26 March 1.9005 0.3277

Northwestern Switzerland 5 March 25 March 1.9528 0.3367

Zurich 8 March 24 March 2.1808 0.3760

Eastern Switzerland 7 March 24 March 2.0553 0.3544

Central Switzerland 5 March 25 March 1.8601 0.3207

Ticino 3 March 22 March 2.1577 0.3720

Switzerland 5 March 24 March 2.0859 0.3596

Note: This table reports the estimated length of the early phase of the epidemic—characterized by an exponential growth of cases—and the corresponding basic reproduction
number R0 in the main Swiss regions. The starting date is conventionally fixed when an incidence of at least 20 cases per 100,000 individuals is reached. The breakpoint date
corresponds to a change in the growth rate of the cumulative number of cases due to containment measures (see Fig. 1). The value of β is retrieved by multiplying R0 and γ

5 (see Appendix 2). More in detail, the initial number of
susceptible people in each age group is the number of
individuals who had not been infected by March 5. Since
the infectious period 1/γ is assumed to be 5.8 days on
average, the initial number of infectious individuals is rep-
resented by the number of new infections occurred during
the 5.8 days before March 512. The initial number of peo-
ple in the resolving state is given by all the subjects who
were infected previously13. Only one person aged 72 had
officially died from COVID-19 before March 5, while no
subjects had recovered yet on this date. Finally, dividing
these values by the total population, we obtain the shares
of individuals who initially belong to each age group and
compartment14.
At this point, following Cochrane (2020), we introduce

in this framework an endogenous behavioral response
common to all age groups. In other words, we suppose
that when individuals start getting infected and dying,
the contact rate β becomes lower, as people try to avoid
the disease. Hence, we model the behavioral response as
a function of the current death rate, according to the
following equation:

log(βt) = log(β0) − αD
�Dt
N

(8)

where Dt = ∑8
a=1 Da,t and N = ∑8

a=1Na.
We calibrate αD as in Cochrane (2020). Using Eq. 8,

we assign values to β0, βt and �Dt to obtain the param-
eter αD, which measures people’s sensitivity to changes
in the death rates. β0 is the baseline contact rate (β0 =
0.3596), while βt is the lowest value of β which is observed.

12The initial number of infectious individuals on March 5 includes the
infections registered between March 1 and March 5, plus 80% of the infections
occurred on February 29.
13Hence, individuals infected before February 28, plus 20% of those infected
on February 29.
14The adjustment based on seroprevalence results described before is meant
to obtain reliable values at this stage of the analysis, avoiding an
over-representation of older individuals.

Thus, the calculations based on our data reveal that βt =
0.17315. The peak in the variation of the daily number of
deaths in Switzerland is 25 deaths, so �Dt = 25. Finally,
N is the total Swiss population in 2020. We recover αD =
108, 697.16.
However, we know that there is striking heterogeneity

in mortality rates across age groups. If people’s behav-
ior is affected by their perceived personal risk, behavioral
responses could greatly vary by age and imposing a com-
mon differential equation for β could be an unrealistic
assumption. Thus, we adapt the behavioral differential
equation to introduce age-specific responses. We model
the behavioral response of each age group as a func-
tion of both the death rate for that particular age group
and a fraction of the death rates registered for the other
age groups (introducing both an egoistic and an altruistic
component).
First of all, we assume that individuals care to the max-

imum possible level (= 1) to the death rate of people
belonging to their own age group, so we keep a one-to-
one relationship between dβa

dt and dDa
dt . Second, we assume

that individuals are, at least partially, altruistic, and adjust
their behavior also in response to changes in the death
rates of other age groups. However, they weight other peo-
ple’s well-being less than their own, with an altruism factor
equal to 0.27 (Long and Krause, 2017). Third, we assume
that people do not give the same importance to the death
rates of all the other age cohorts, but rather they adopt a
societal perspective. In other words, individuals give more
weight to the death rates of those age groups that have a
higher VSL. Therefore, if we consider the perspective of
age cohorts 0–9, 10–19, 30–39, 40–49, 50–64, 65–79, and
80+, and we normalize their VSL by giving value 1 to the
highest VSL (i.e., that of the age group 20–29), we obtain

15We recovered the lowest observed value for β from R0t . Indeed, we first
estimate the daily value for R0t , and we recover the corresponding βt from the
relationship R0t = βt

γ
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Table 5 Normalization coefficients by age group

(1) (2)

Reference group: Reference group:

Age 20–29 30–39

0–9 0.9126 = φ1,3 0.9302 = φ1,4

10–19 0.9514 = φ2,3 0.9697 = φ2,4

20–29 1 = φ3,3 –

30–39 0.9810 = φ4,3 1 = φ4,4

40–49 0.8557 = φ5,3 0.8723 = φ5,4

50–64 0.5936 = φ6,3 0.6050 = φ6,4

65–79 0.2729 = φ7,3 0.2781 = φ7,4

80+ 0.0940 = φ8,3 0.0958 = φ8,4

Note: This table reports the normalized coefficients obtained by taking the ratio
between the value of statistical life of each age group and the value of statistical life
of a reference group. The reference categories are represented by the age groups
20–29 and 30–39, namely those characterized by, respectively, the first and second
highest values of statistical life

the coefficients reported in column (1) of Table 5. When
we adopt the perspective of individuals in group 20–29,
we have slightly different normalized coefficients, since,
excluding the VSL of that group, the highest VSL becomes
that of the cohort aged 30–39. Normalizing it to 1, we
obtain the coefficients displayed in column (2) of Table 5.
Following Atkeson (2021), we finally include in Eq. 8 a

parameter ψ(t) that captures seasonal patterns affecting
the transmissibility of the virus:

ψ(t) = ω ∗ (cos((t + τ) ∗ 2π/365) − 1)/2 (9)

where ω measures the amplitude of seasonal fluctuations
and is set equal to 1, while τ identifies the peak in the
transmission of the virus. In line with Atkeson (2021) and
the epidemiological literature mentioned above (e.g., Park
et al., 2020), we conventionally set this peak on January 31,
thus τ = 3316.
Putting everything together, we now have age-specific

differential equations for the behavioral responses
which can be included in the age-structured SIRDC
model:

dSa
dt

= −βa
∑8

a=1 Ia
∑8

a=1Na
∗ Sa (10)

dIa
dt

= βa
∑8

a=1 Ia
∑8

a=1Na
∗ Sa − γ Ia (11)

dRa
dt

= γ Ia − θRa (12)

16Indeed, 33 days pass between January 31 and March 5.

dDa
dt

= δaθRa (13)

dCa
dt

= (1 − δa)θRa (14)

dβa
dt

= β0

exp
(
αD

(
dDa
dt + 0.27

( 8∑

i=1,i�=a
φi,3

dDi
dt

))
− ψ

) − βa

for a ∈ {1, 2, 4, 5, 6, 7, 8} (15)

dβa
dt

= β0

exp
(
αD

(
dDa
dt + 0.27

( 8∑

i=1,a �=3
φi,4

dDi
dt

))
− ψ

) − βa

for a ∈ {3} (16)

These equations imply an immediate reduction of contact
rates for older individuals, while younger people tend to
reduce their interactions more slowly since the death rate
for their age group is low or even null. Figure 2 shows the
evolution over time of the contact rates by age cohort. As
before, N is normalized to 1, so that Sa, Ia, Ra, Da and
Ca represent the shares of population in each age group
and compartment. As already mentioned, we consider a
time horizon of 180 days. Therefore, instead of looking
directly at the results for state Da on September 1, direct
deaths are obtained by applying the IFR to the cumu-
lative number of infections predicted in each age group
by that day. This allows to take into account the addi-
tional deaths which would have materialized in the first
weeks of September. Figure 3 reports the evolution over
time of the variables considered in our SIRDCmodel after
aggregating the different age groups.

4.3.2 Results
Table 6 shows our estimates of the potential number of
direct deaths17 in the absence of restrictive measures.
According to our SIRDC model which accounts for cit-

izens’ behavioral responses and for seasonal patterns, the
spread of the virus in the absence of any government inter-
vention would have caused almost 11,500 deaths within
6 months from the beginning of the pandemic (see also
Table 14), especially among older age groups. Robustness
evidence will be presented in Appendix 3, where we dis-
cuss an alternative approach to derive the infection fatality
rates.

5 An estimate of potential overflow deaths
The present section is dedicated to estimate the overflow
deaths which would have occurred in a counterfactual sce-
nario without lockdown measures. These fatalities would
17Note that IFRa is null for two of the three youngest age groups, as no deaths
are reported in the official data. The youngest individual who has officially
died because of COVID-19 in Switzerland is aged 31.
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Fig. 2 Contact rate by age group over time. Note: This figure displays the evolution over time of the contact rates of individuals belonging to
different age groups. Such dynamics reflect the differences in the intensity of the behavioral responses of these subjects. In particular, older
individuals—namely those who are more likely to suffer from the most severe consequences of the disease—tend to reduce their contact rates
more substantially in response to an increase in the number of deaths

have resulted from hospitals reaching their capacity and
being unable to serve some COVID-19 patients. In order
to estimate them, we first need to quantify daily demand
for specialized healthcare and daily supply of acute care
and intensive care beds in Switzerland. Second, we need
to assign mortality probabilities for cases requiring hospi-
talization or intensive care, both when appropriate care is
provided or denied.

5.1 Healthcare demand
The SIRDC model presented in Section 4.3.1 (as the basic
SIR model in Appendix 1) allows us to compute the daily
number of new cases within each age group. On each day
t, the share of new cases in age group a can be computed
as NCa,t = (Ia,t − Ia,t−1) + (Ra,t − Ra,t−1) + (Da,t −
Da,t−1) + (Ca,t − Ca,t−1) in the SIRDC model. The actual
number of cases is then obtained multiplyingNCa,t by the
total Swiss population. In order to derive the demand for
healthcare services by COVID-19 patients, we exploit our
data to compute the share of infected individuals within
each age group who were hospitalized or needed intensive
care treatment18.

18We distinguish between people needing a hospital bed, but not intensive
care, and people needing intensive care.

5.2 Healthcare supply
As the survival probability of COVID-19 patients depends
crucially on the provision of specialized care, we need
precise information about the total number of available
hospital and ICU beds in Switzerland. According to the
OECD, in 2018, there were 3.6 acute care hospital beds per
1000 inhabitants in the country. Considering the popula-
tion in 2020, the stock of curative hospital beds over the
entire country turns out to be about 30,982 beds. Accord-
ing to Rhodes et al. (2012), then, 3.1% of these acute care
beds are for intensive care, giving us a stock of 960 beds
in Switzerland. This figure is in line with the estimate pro-
vided by the Swiss Society of Intensive Care Medicine,
which sets the stock between 950 and 1000 beds in the
82 intensive care units present on the Swiss territory. For
the moment, we do not consider the possibility to improve
healthcare supply, although there is some evidence that
the total stock of ICU beds could be increased by 50%
(icumonitoring.ch, 2020).
However, healthcare resources cannot be allocated only

to COVID-19 patients and, indeed, before the spread of
the virus, the daily average occupation rate of hospital
and ICU beds was, respectively, 74% and 75% (Federal
Statistical Office, 2020; European Society of Intensive
Care Medicin, 2020). We assume that 50% of the stock
of acute care beds can be allocated to the treatment of
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Fig. 3 SIRDC model. Note: This figure plots the evolution of the daily shares of individuals in each compartment according to the predictions of our
SIRDC model over the time period considered

Table 6 Direct deaths (infections until September 1)

SIR model SIRDCmodel

Age Pop Cases IFRa Deaths Cases IFRa Deaths

0–9 871,211 712,403 0.0000% 0 172,233 0.0000% 0

10–19 844,092 690,167 0.0000% 0 166,857 0.0000% 0

20–29 1,045,160 854,592 0.0000% 0 206,098 0.0000% 0

30–39 1,228,988 1,004,847 0.0158% 159 242,444 0.0158% 38

40–49 1,198,240 979,793 0.0108% 106 236,544 0.0108% 26

50–64 1,810,157 1,480,214 0.1682% 2490 345,460 0.1682% 581

65–79 1,152,223 942,376 3.0574% 28,812 162,498 3.0574% 4968

80+ 453,828 371,150 9.1148% 33,830 64,411 9.1148% 5871

Total 8,603,899 7,035,542 65,397 1,596,545 11,484

Note: This table reports the number of direct deaths predicted according to both a basic SIR model and our SIRDC model accounting for seasonality and endogenous
behavioral responses. For each model, the table displays the estimated number of infections in each age group and the corresponding number of direct fatalities, as well as
the imputed infection fatality rate used for the computation



Gatti and Retali Swiss Journal of Economics and Statistics           (2021) 157:4 Page 12 of 21

COVID-19 patients and, following the Swiss Society
of Intensive Care Medicine, we fix the available stock
of ICU beds for individuals affected by COVID-19
at 56%.
The daily availability of beds depends also on the

length of stay in hospital and intensive care for the aver-
age patient. Hence, we exploit the data released by the
FOPH to calculate the average number of days spent by a
COVID-19 patient in ICU, obtaining an estimate of 11.3
days. Some of the individuals admitted to the ICU spend
some time before in acute care beds, for an average of 1.9
days. We notice in the data that when the patients pass
through the hospitalization phase before receiving inten-
sive care, the date of the test assessing whether they have
contracted the virus or not is subsequent to the hospital-
ization date. We can speculate that these 120 people are
first admitted to the hospital and then moved to ICU once
confirmed to be positive for COVID-19.
With regard to patients who do not need ICU, instead,

we cannot apply the same procedure described above
to obtain the figure for hospitalizations, since we know
when an individual enters the hospital, but the exit date
is not available in the dataset. Therefore, we rely on
Pellaud et al. (2020), who calculate several metrics in a
retrospective cohort study about 196 hospitalized individ-
uals with confirmed cases of COVID-19 in the Fribourg
area. The average length of stay for COVID-19 patients
who require hospitalization but not intensive care is
7 days.
Finally, daily supply is obtained dividing the stock

of hospital and ICU beds which could be allocated to
COVID-19 patients by the respective length of stay,
obtaining an estimate of 0.5∗ (30,982−960)

7 = 2, 144.39 daily
hospital beds and 0.56∗ 960

11.3 = 47.58 daily places available
in ICU.

5.3 Mortality rates
In order to estimate the number of overflow deaths, then,
we need mortality rates for the cases in which people are
admitted or not to the hospital or ICU. The individual data
released by the FOPH also allow us to calculate the prob-
ability of death when patients receive appropriate care:
indeed, the problem of overcrowding was never faced by
Switzerland over the period covered by these data. In light
of these data, the probability of dying for admitted patients
is 17.9% in case of hospitalization and 52% in case of inten-
sive care. These results are in line with those presented
in international literature (Rojas, 2020; Greenstone and
Nigam, 2020).
Since we cannot directly calculate the corresponding

probabilities when the demand for healthcare cannot be
accommodated, we follow Rojas (2020), who assumes that
mortality increases threefold when a patient is rejected

from a hospital (i.e., 53.7% in Switzerland). For ICU cases,
we assume a survival probability of 10%, which is derived
from the existing literature (Greenstone and Nigam, 2020;
Ferguson et al., 2020). It is worth remarking that such
assumptions imply that the mortality rates do not change
depending on the age of the potential patient. This situ-
ation leads to a considerable number of overflow deaths
also among younger people, explaining why these over-
flow deaths, compared to direct ones, are significantly
higher in those categories. However, we do expect that
reached a certain level of criticality, even younger people
will face a significant risk of dying if left without proper
healthcare interventions.

5.4 Overflow deaths
Exploiting the daily demand and supply of hospital beds
computed above, we can now predict the daily number of
deaths due to the shortage of healthcare resources. More
in detail, on days when demand ≤ supply, all people in
need can receive appropriate care, and, therefore, survival
probabilities are those estimated using FOPH data.When,
instead, demand > supply and facilities reach their capac-
ity (Greenstone and Nigam, 2020), for the individuals who
do not receive healthcare, we apply the mortality proba-
bilities of 53.7% and 90% for hospitalization and intensive
care respectively.
Following the literature, we assume that age does not

affect the probability of being rejected or admitted to
healthcare facilities. In other words, the share of patients
in each age group who do not receive appropriate care
stays constant. For instance, if 20% of the cumulative num-
ber of patients cannot obtain a hospital bed on day t,
that day 20% of patients belonging to each age group are
assumed not to have received the needed care. We obtain
the total number of overflow deaths over the considered
time period by summing up across all days.
As reported in Table 7 (see also Table 15), our SIRDC

model allows to predict slightly more than 1500 overflow
deaths by September 1, all imputable to overcrowded
ICUs. Such estimate is significantly lower in comparison
to the one obtained by means of a basic SIR model.
Endogenous individual responses and seasonal patterns,
in fact, lead to a slower spread of the virus, flattening the
number of new cases. As a result, since the fraction of new
cases requiring hospitalization or intensive care remains
constant, hospitals avoid reaching their maximum
capacity.

6 Conclusions
The introduction of lockdown measures to limit the
spread of the COVID-19 pandemic has been at the center
of a heated economic and political debate in the major-
ity of countries. Several studies have therefore attempted
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Table 7 Overflow deaths (infections until September 1)

SIR model SIRDCmodel

Age Hospital ICU Total Hospital ICU Total

0–9 772 256 1,028 0 19 19

10–19 140 57 197 0 4 4

20–29 799 194 993 0 14 14

30–39 967 669 1636 0 49 49

40–49 1549 889 2438 0 66 66

50–64 2856 4743 7599 0 336 336

65–79 16,083 17,888 33,971 0 858 858

80+ 10,729 3680 14,409 0 178 178

Total 33,895 28,376 62,271 0 1524 1524

Note: This table reports the number of deaths due to the shortage of healthcare facilities predicted according to both a basic SIR model and our SIRDC model accounting for
seasonality and endogenous behavioral responses. For each model, the table displays separately the number of overflow deaths which can be attributed to the lack of
hospital (but not ICU) beds and to the lack of ICU beds

an evaluation of the benefits associated to such restric-
tive measures. Focusing on the lockdown implemented in
Switzerland in March 2020, our paper contributes to this
extensive literature from both a methodological and an
empirical perspective.
In order to estimate the number of potentially saved

lives during the first wave of the pandemic in Switzerland,
we have developed a new SIRDCmodel which predicts the
evolution of the epidemic in the absence of containment
measures. In comparison to a basic model, our version
includes additional features which make the counterfac-
tual scenario more realistic. First of all, we incorporate
age-specific endogenous behavioral responses. In other
words, not only we consider that individuals would spon-
taneously reduce their contacts even in the absence of a
government intervention, but we also account for the fact
that this response varies depending on age. Furthermore,

by including a seasonality component, we avoid to neglect
that the transmissibility of the virus is not constant over
time and, after reaching a peak in winter, tends to become
very low in summer.
Our predictions about the daily number of infections,

hospitalizations and deaths are based on rich individual-
level data concerning COVID-19 cases in Switzerland. In
particular, we exploit these data to derive the initial con-
ditions and the necessary parameters to fit our model.
We also predict the number of additional casualties which
would have occurred because of the constrained availabil-
ity of healthcare facilities. Although Switzerland did not
face serious issues of hospital overcrowding during the
first wave of the pandemic, in fact, the absence of con-
tainment measures would have led to a higher number of
deaths because of the lack of hospital beds, especially in
intensive care units.

Table 8 Estimated number of saved lives (by September 1)

SIR model SIRDCmodel

Actual Direct Overflow Excess Direct Overflow Excess

0–9 1 0 1028 1027 0 19 18

10–19 0 0 197 197 0 4 4

20–29 0 0 993 993 0 14 14

30–39 5 159 1636 1790 38 49 82

40–49 6 106 2438 2538 26 66 86

50–64 90 2490 7599 9999 581 336 827

65–79 455 28,812 33,971 62,328 4968 858 5371

80+ 1215 33,830 14,409 47,024 5871 178 4834

Total 1772 65,397 62,271 125,896 11,484 1524 11,236

Note: This table reports the number of saved lives in each age group according to both a basic SIR model and our SIRDC model accounting for seasonality and endogenous
behavioral responses. The estimated number of saved lives is computed as the difference between the total number of predicted fatalities (direct and overflow) and the
actual number of occurred deaths
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Although the features of our SIRDC model allow
to improve the reliability of predictions, results should
always be interpreted cautiously. Indeed, they depend on
the assumptions concerning the structure of model, the
value of its parameters, and the utilization of healthcare
resources.
According to our estimates, the absence of any pol-

icy intervention would have led to approximately 11,500
direct deaths within 6 months from the beginning of the
pandemic, plus 1500 overflow fatalities related to hospital
overcrowding. Considering the actual number of COVID-
19-related deaths over the same time period, our results
suggest that more than 11,200 lives were saved by the
lockdown, as reported in Table 8. This is a largely rele-
vant result, especially if we consider the relatively short
time period under analysis (until September 1), which also
includes the summer months during which the spread of
the disease decreases spontaneously (see Appendix 4 for
estimates covering a longer time horizon).

Appendix 1: An age-structured SIRmodel
The values of R0 and β determined in Section 4.1 can
be exploited to fit a susceptible-infected-recovered (SIR)
model which allows to simulate the evolution of the
spread of the epidemic in Switzerland if containmentmea-
sures had not been implemented. Since we are interested
in estimating the number of potential infections which
would have occurred in each age group, we build an
age-structured SIR model following Deforche (2020), but
letting the age groups be eight (i.e., 0–9; 10–19; 20–29;
30–39; 40–49; 50–64; 65–79; 80+) rather than only two.
According to this model, which allows contacts between

all age groups a, at any time, each individual can be either
Susceptible (S), Infectious (I), or Recovered (R). The last
compartment not only includes those subjects who are
not infectious any more, but also those who died because
of the disease. Excluding vital dynamics (i.e., neglecting
births and deaths that are unrelated to the epidemic, see
Rowthorn andMaciejowski, 2020), the model is described
by the following system of ordinary differential equations:

dSa
dt

= −β0
∑8

a=1 Ia
∑8

a=1Na
∗ Sa (17)

dIa
dt

= β0
∑8

a=1 Ia
∑8

a=1Na
∗ Sa − γ Ia for a ∈ {1, ..., 8} (18)

dRa
dt

= γ Ia (19)

The rate at which susceptible individuals in each age
group a become infectious

(
β0

∑8
a=1 Ia∑8

a=1 Na
∗ Sa

)
depends on

the share of infectious subjects in the total population, on
the value of the contact rate β0, which mirrors the speed

of the transmission of the disease, and on the remaining
stock of susceptible individuals.
As previously mentioned, γ represents the rate at which

infectiousness resolves: individuals who are no longer
infectious move to the resolving state and cannot change
compartment any more (Eksin et al., 2019; Toxvaerd,
2020). At each point in time, the cumulative stock of
individuals across states remains constant:

∑8
a=1(Sa +

Ia + Ra) = ∑8
a=1Na = N , where N is the total pop-

ulation. Normalizing N to 1, Sa, Ia, and Ra are inter-
preted as the shares of the population belonging to each
compartment.
At this point, the system of differential equations can

be recursively estimated to predict the daily number of
people in each compartment after the beginning of the
epidemic. Since the analysis is performed at the national
level, the initial conditions are represented by the indi-
viduals in each age group and compartment on March
5. We exploit the values of β0 and γ discussed before
(β0 = 0.3596; γ = 0.1724 ).
Figure 4 plots the evolution over time of the pre-

dicted share of individuals who belong to each compart-
ment when age groups are aggregated. It is interesting to
observe that, when herd immunity is reached19, the epi-
demic continues to spread at a slower rate, since each
person infects less than one other person. Thanks to this
model, therefore, we can estimate the total number of
infected people by the end of the pandemic, who corre-
spond to the amount of people in state Rwhen the number
of susceptible individuals does not decrease any more and
nobody else contracts the disease20. At this point, hav-
ing predicted the total number of infections in each age
group, the corresponding number of potential deaths can
be derived through the infection fatality rate computed
from the data.

Appendix 2: SIR and SIRDCmodels—initial
conditions
The initial values used to fit the SIR and SIRDCmodels are
reported in Tables 9 and 10. The first subscript indicates
the age group. These shares are calculated on March 5,
2020.

Appendix 3: An alternative estimate of the
infection fatality rate
Considering that several approaches have been proposed
so far in the literature to estimate the infection fatal-
ity rate of COVID-19, we now back up the imputed

19Herd immunity is reached 46 days after March 5, i.e., on April 20.
20Quite reassuringly, it is also possible to observe that the cumulated number
of infections predicted by the model during the first days after March 5, when
containment measures were not in place yet, are actually in line with those
observed in the data.
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Fig. 4 SIR model. Note: This figure plots the evolution of the daily shares of individuals in each compartment according to the predictions of a basic
SIR model

IFR discussed in Section 4.2 by estimating the sever-
ity of the disease with an alternative methodology. More
specifically, we follow the approach proposed by Rinaldi
and Paradisi (2020), which relies on the use of admin-
istrative data concerning death counts and demographic
information.

A potential concern regarding the imputed IFR reported
in Table 6, indeed, is represented by the fact that official
data about COVID-19 cases may misrepresent the actual
number of deaths related to the spread of the virus. FOPH
deaths data may present a downward bias because peo-
ple might die at home (because of COVID-19) or in other

Table 9 Initial values—SIR model

Susceptibles Infectious Recovered

S1,0 = 871031
8603899 I1,0 = 90

8603899 R1,0 = 90
8603899

S2,0 = 843844
8603899 I2,0 = 242

8603899 R2,0 = 6
8603899

S3,0 = 1044880
8603899 I3,0 = 197

8603899 R3,0 = 83
8603899

S4,0 = 1228592
8603899 I4,0 = 334

8603899 R4,0 = 62
8603899

S5,0 = 1197959
8603899 I5,0 = 246

8603899 R5,0 = 35
8603899

S6,0 = 1809807
8603899 I6,0 = 323

8603899 R6,0 = 27
8603899

S7,0 = 1152211
8603899 I7,0 = 69

8603899 R7,0 = 12
8603899

S8,0 = 453792
8603899 I8,0 = 36

8603899 R8,0 = 0
8603899

Note: This table reports the shares of individuals in each compartment of the SIR model on March 5
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Table 10 Initial values—SIRDC model

Susceptibles Infectious Resolving Dead Recovered

S1,0 = 871031
8603899 I1,0 = 90

8603899 R1,0 = 90
8603899 D1,0 = 0

8603899 C1,0 = 0
8603899

S2,0 = 843844
8603899 I2,0 = 242

8603899 R2,0 = 6
8603899 D2,0 = 0

8603899 C2,0 = 0
8603899

S3,0 = 1044880
8603899 I3,0 = 197

8603899 R3,0 = 83
8603899 D3,0 = 0

8603899 C3,0 = 0
8603899

S4,0 = 1228592
8603899 I4,0 = 334

8603899 R4,0 = 62
8603899 D4,0 = 0

8603899 C4,0 = 0
8603899

S5,0 = 1197959
8603899 I5,0 = 246

8603899 R5,0 = 35
8603899 D5,0 = 0

8603899 C5,0 = 0
8603899

S6,0 = 1809807
8603899 I6,0 = 323

8603899 R6,0 = 27
8603899 D6,0 = 0

8603899 C6,0 = 0
8603899

S7,0 = 1152211
8603899 I7,0 = 69

8603899 R7,0 = 11
8603899 D7,0 = 1

8603899 C7,0 = 0
8603899

S8,0 = 453792
8603899 I8,0 = 36

8603899 R8,0 = 0
8603899 D8,0 = 0

8603899 C8,0 = 0
8603899

Note: This table reports the shares of individuals in each compartment of the SIRDC model on March 5

non-medical facilities, and remain untested. This situation
can be present if individuals decide not to go to the hos-
pital, or they are not in a position to go. At the same time,
official COVID-19 deaths data can present an upward bias
since a fraction of those who died because of the pan-
demic were already severely ill individuals, who might
have died over the following few weeks or months without
the virus. Thus, COVID-19 has simply slightly anticipated
their death.
In the attempt to correct for these biases, we use

weekly administrative data about the deaths recorded
between 2000 and 202021 by the Federal Statistical
Office, which also provides demographic information at
the cantonal level22. We then elaborate these data to
identify eight age groups (0–9; 10–19; 20–29; 30–39;
40–49; 50–64; 65–79; 80+) in the seven major Swiss
regions (Lake Geneva, Espace Mittelland, North-West
Switzerland, Zurich Region, Eastern Switzerland, Central
Switzerland, and Ticino).
Exploiting such information, we build a Bayesian model

which fits age-stratified mortality and demographic data
for the seven regions between 2000 and 2020 over the
weeks 11–19, namely those characterized by the COVID-
19 outbreak. Specifically, starting from a simple standard
binomial mortality mode, we assume that deaths are bino-
mially distributed and in weeks affected by COVID-19 the
baseline lethality rate is augmented by a factor that indi-
cates the interaction between the IFR and the infection
rate of COVID-19. Furthermore, we assume that mortality
is not correlated between different age groups. The model
is described with the following binomial equations:

21Data provide information about gender, age group (5 years bin), and
cantonal residence.
22Data provide information on the total population, by gender and age.

Di,a,y ∼ Binomial(δa, Ni,a,y) for y ∈ {2000, ..., 2019}
(20)

Di,a,2020 ∼ Binomial(δa + δCovida ∗ θi, Ni,a,2020)
(21)

where i denotes the macro-region, y the year, and a one
of the eight age groups (0–9; 10–19; 20–29; 30–39; 40–49;
50–64; 65–79; 80+). Di,a,y and Ni,a,y are, respectively, the
total deaths and population in macro-region i, year y, and
age range a.
The baseline lethality rates δa are assumed to be con-

stant across macro-regions and years, but can vary across
age groups. Before 2020, the infection fatality rates δCovida
are assumed to be equal to zero, while in 2020, they are
heterogenous across age ranges and fixed in the other
dimensions. Finally, the infection rates θi are region-
specific but constant across age groups.
The identifying assumption is that in the absence of

the COVID-19 outbreak, the weekly deaths recorded in
2020 would have been the same on average as the ones
in the previous 20 years. We provide visual evidence
(Fig. 5) about the extent to which this assumption is sat-
isfied. Indeed, over the first 10 weeks of 2020, excess
mortality (calculated as the number of deaths in 2020 ver-
sus the average value of deaths over the years between
2000 and 2019) is substantially null. However, we can-
not check whether the composition of the typologies of
deaths changes over time and particularly in 2020, given
that statistics on the causes of deaths are not available.
Using Markov Chain Monte Carlo procedures, we esti-

mate an overall infection fatality rate for COVID-19 of
1.087123% (95% confidence interval 0.2899833%), with
striking heterogeneity across age groups (see Table 11).
As required with a Bayesian model, we specify priors

for all the parameters we are interested in monitoring,
i.e., δa, δCovida , θi. We choose uninformative priors for all
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Fig. 5 Excess mortality 2020 vs. mean 2000–2019. Note: This figure plots the weekly difference between the death counts in 2020 and the
corresponding mean computed over the years between 2000 and 2019. During the first 10 weeks of 2020, excess mortality is approximately zero in
expectation, while during the phase of the pandemic outbreak (weeks 11–19), excess mortality becomes significantly positive

parameters:

δa ∼ Uniform[ 0, 0.1] (22)

δCovida ∼ Uniform[ 0, 0.3] (23)
θi ∼ Uniform[ 0, 0.2] (24)

To derive point estimates and respective 95% confidence
intervals for the parameters of interest, we employ a
Markov Chain Monte Carlo procedure that allows us to
calculate the median and the confidence intervals of the
posterior distributions of δa, δCovida , and θi, using as model

Table 11 Infection fatality rates by age group

Age groups Median Confidence interval

0–9 0.00016 (0.0000056–0.00110)

10–19 0.00023 (0.0000089–0.00130)

20–29 0.00014 (0.0000045–0.00094)

30–39 0.00019 (0.0000064–0.00120)

40–49 0.00023 (0.0000078–0.00150)

50–64 0.00023 (0.0000076–0.00160)

65–79 0.01300 (0.0031–0.03000)

80+ 0.17000 (0.047–0.29000)

Note: This table reports the age group-specific infection fatality rates computed by
means of the Bayesian approach, as well as the corresponding confidence intervals

Eqs. (6) and (7)23.We draw 100,000 samples from the joint
posterior distribution and use 50 independent chains.
The burn in interval is fixed at 20,000, and the thin-
ning interval is 30. Convergence is checked (and satisfied)
visually with Gelman-Rubin diagnostic. Our estimates are
robust to the definitions of alternative distributions of the
priors.
Table 12 shows our estimates of the potential number

of direct deaths in the absence of restrictive measures
(both for SIR and SIRDC models), when we use the
infection fatality rates estimated through this Bayesian
approach. As previously mentioned, this approach leads
to higher infection fatality rates, which result in
more potential direct deaths, also among younger age
groups.
It is worth underlining here that such differences in the

infection fatality rates are also reverberated in the slight
discrepancies between the number of cases predicted by
the SIRDC model reported in Tables 6 and 12. Accord-
ing to our SIRDC model, indeed, individual behavioral
responses depend on the number of daily deaths. Hence,
changes in the fatality rate imply differences in the inten-
sity of reduction of the contact rate βa and in the number
of predicted infections.

23The likelihood function is composed of 5 equations for each combination
macro-region—age group, for a total of 21 ∗ 7 ∗ 8 = 1176 equations
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Table 12 Direct deaths (infections until September 1)

SIR model SIRDCmodel

Age Pop Cases IFRa Deaths Cases IFRa Deaths

0–9 871,211 712,403 0.016% 114 159,980 0.016% 26

10–19 844,092 690,167 0.023% 159 154,907 0.023% 36

20–29 1,045,160 854,592 0.014% 120 191,341 0.014% 27

30–39 1,228,988 1,004,847 0.019% 191 225,456 0.019% 43

40–49 1,198,240 979,793 0.023% 225 219,719 0.023% 51

50–64 1,810,157 1,480,214 0.023% 340 331,345 0.023% 76

65–79 1,152,223 942,376 1.300% 12,251 181,062 1.300% 2354

80+ 453,828 371,150 17.00% 63,095 51,367 17.00% 8732

Total 8,603,899 7,035,542 76,495 1,515,177 11,345

Note: This table reports the number of direct deaths predicted according to both a basic SIR model and our SIRDC model accounting for seasonality and endogenous
behavioral responses. For each model, the table displays the estimated number of infections in each age group and the corresponding number of direct fatalities, as well as
the Bayesian infection fatality rate used for the computation

Since an alternative infection fatality rate leads to a dif-
ferent number of predicted infections, in Table 13, we
report the corresponding overflow deaths due to the lack
of available beds in intensive care units.

Appendix 4: Results from the SIRDCmodel without
restrictions on the time horizon
This Appendix reports the estimates derived from our
SIRDC model accounting for seasonality and endogenous
behavioral responses when we consider the entire time
horizon until the contagion finally fades out and we do
not restrict our attention only on the first 6 months after

the beginning of the pandemic, before the outbreak of the
second wave of infections.
Figure 6 shows that the model predicts also a second

peak of infections after 200 days. The dynamics stabi-
lizes after approximately 500 days, when 40% of Swiss
individuals have been infected.
Tables 14 and 15 report the corresponding num-

ber of direct and overflow deaths by age group. In
the absence of restrictions on the time horizon, our
model would predict roughly 28,500 fatalities, more than
twice the value over the first 6 months (see Tables 6
and 7).

Table 13 Overflow deaths (infections until September 1)

SIR model SIRDCmodel

Age Hospital ICU Total Hospital ICU Total

0–9 772 256 1,028 0 18 18

10–19 140 57 197 0 4 4

20–29 799 194 993 0 14 14

30–39 967 669 1636 0 47 47

40–49 1549 889 2438 0 63 63

50–64 2856 4743 7599 0 333 333

65–79 16,083 17,888 33,971 0 1032 1032

80+ 10,729 3680 14,409 0 138 138

Total 33,895 28,376 62,271 0 1649 1649

Note: This table reports the number of overflow deaths due to the shortage of healthcare facilities predicted according to both a basic SIR model and our SIRDC model
accounting for seasonality and endogenous behavioral responses. For each model, the table displays separately the number of overflow deaths which can be attributed to
the lack of, respectively, hospital (but not ICU) and ICU beds
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Fig. 6 SIRDC model–time horizon: 1000 days. Note: This figure plots the evolution of the daily shares of individuals in each compartment according
to the predictions of our SIRDC model in the absence of restrictions on the time horizon

Table 14 Direct deaths—SIRDC model

Age Cases IFRa Deaths

0–9 381,119 0.0000% 0

10–19 369,223 0.0000% 0

20–29 456,055 0.0000% 0

30–39 536,458 0.0158% 85

40–49 523,409 0.0108% 57

50–64 764,014 0.1682% 1285

65–79 360,673 3.0574% 11,027

80+ 142,946 9.1148% 13,029

Total 3,533,897 25,483

Note: This table reports the total number of direct deaths predicted by our SIRDC
model accounting for seasonality and behavioral responses. The table displays the
estimated number of infections in each age group and the corresponding number
of direct fatalities, as well as the imputed infection fatality rate used for the
computation

Table 15 Overflow deaths—SIRDC model

Age Hospital ICU Total

0–9 0 40 40

10–19 0 9 9

20–29 0 30 30

30–39 0 104 104

40–49 0 138 138

50–64 0 703 703

65–79 0 1775 1775

80+ 0 368 368

Total 0 3167 3167

Note: This table reports the total number of overflow deaths due to the shortage of
healthcare facilities predicted by our SIRDC model accounting for seasonality and
behavioral responses. The table displays separately the number of deaths which can
be attributed to the lack of, respectively, hospital (but not ICU) and ICU beds
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