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Abstract 

In recent years, microeconometrics experienced the ‘credibility revolution’, culminating in the 2021 Nobel prices for 
David Card, Josh Angrist, and Guido Imbens. This ‘revolution’ in how to do empirical work led to more reliable empiri-
cal knowledge of the causal effects of certain public policies. In parallel, computer science, and to some extent also 
statistics, developed powerful (so-called Machine Learning) algorithms that are very successful in prediction tasks. 
The new literature on Causal Machine Learning unites these developments by using algorithms originating in Machine 
Learning for improved causal analysis. In this non-technical overview, I review some of these approaches. Subse-
quently, I use an empirical example from the field of active labour market programme evaluation to showcase how 
Causal Machine Learning can be applied to improve the usefulness of such studies. I conclude with some consid-
erations about shortcomings and possible future developments of these methods as well as wider implications for 
teaching and empirical studies.
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1 Introduction
Arguably, in 1983 (applied) econometrics reached its 
low point in what Ed Leamer called the credibility crisis 
in his famous article in the American Economic Review 
(Leamer, 1983). The quote from his paper ‘hardly any-
one takes anyone else’s data analyses seriously’ (p. 37) 
described rather accurately the state of (applied) econo-
metrics in those times. Obviously, once empirical results 
lose their credibility by the standards of our own disci-
pline, they are worthless as a tool for evaluating and 
improving public policy.

After this near death experience in the 1980s, the field 
changed dramatically. Researchers became much more 
aware of the limits of econometric empirical analyses and 
of their dependence on crucial (identifying) assumptions. 
Since such assumptions can dramatically impact the 

conclusions to be drawn from the empirical studies, they 
must be credible. Credibility means that these assump-
tions are reasonable approximations of the empirical real-
ity analysed. Angrist and Pischke (2010) coined the term 
‘credibility revolution’ for this period. Novel methods and 
a better understanding of old methods, like Instrumental 
Variables (Heckman, 1997; Imbens & Angrist, 1994) and 
regression, as well as a focus on parameters that could 
be ‘credibly identified’ changed the way empirical analy-
ses were performed. Although this change was certainly 
most pronounced in microeconometrics, it proliferated 
and still proliferates across all fields of applied economet-
rics, although at different speeds.

This progress was honoured by the Nobel committee 
in Stockholm by giving the ‘The Sveriges Riskbank Prize 
in Economic Sciences in Memory of Alfred Nobel’ to Jim 
Heckman in 2000 and to Joshua Angrist, David Card, and 
Guido Imbens in 2021.1 It is now best practice in empiri-
cal work to clearly state the assumptions needed for *Correspondence:
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1 The Nobel lectures of Angrist (2022) and Imbens (2022) contain nice recaps 
of these developments.

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s41937-023-00113-y&domain=pdf
http://orcid.org/0000-0003-4308-1579


Page 2 of 15Lechner  Swiss Journal of Economics and Statistics           (2023) 159:8 

estimating (causal) effects, discuss their credibility, and, 
finally, acknowledge that these causal effects may be het-
erogeneous across the units analysed.

Other fields also saw massive improvements in con-
ducting credible empirical analyses. For example, in 
statistics Donald Rubin (Imbens & Rubin, 2015; Rubin, 
1974) formalized the potential outcome approach, in epi-
demiology Robins (1986) proposed a dynamic approach 
based on potential outcomes, and in computer sci-
ence Judea Pearl (Pearl, 2000; Pearl & Mackenzie, 2018) 
introduced a graph-based approach to causality, i.e. the 
directed acyclic graphs (DAG).

In summary, around 2010 we had new best practices on 
how to estimate average effects of what was now called 
‘treatments’ (policies, actions, decisions, etc.). By using 
the term ‘quasi-experiments’ or ‘natural experiments’ 
for such methods, we rather explicitly claim that such 
observational studies are almost as credible as if the data 
came from an experiment. Major shortcomings were still 
the difficulty of estimating effect heterogeneity at a fine-
grained level as well as the frequent use of parametric 
statistical models that impose additional restrictions like 
specific functional form assumptions that cannot be jus-
tified other than by computational (and intellectual) con-
venience. Nevertheless, the value of empirical economic 
studies for public policy had increased substantially.2

In addition to improvements in the methodology and 
application of econometrics mentioned before, we saw 
major technological advances that also affected econo-
metrics. Computing power increased and is still increas-
ing exponentially at constant or even decreasing costs.3 
At the same time, costs of data storage fell, and data col-
lection became much easier and socially more accept-
able. Although the latter trend was mainly driven by 
private companies (just think about the data our smart-
phones are continuously collecting and transferring to 
various tech companies), the digitalization of the state 
also increased the volume of the data collected by pub-
lic offices and eased the technical access and use for 
research and policy consulting. Simultaneously, com-
puter scientists developed new and powerful, but com-
putationally demanding, algorithms that turned out to be 
very successful at prediction tasks. These Machine Learn-
ing algorithms tend to be highly nonlinear, very flexible, 
and easily beat common econometric algorithms at most 
prediction tasks.

Causal Machine Learning unites these trends: it adapts 
Machine Learning methods to answer well identified 
causal questions using large and informative data (e.g. 
Athey, 2017; Athey & Imbens, 2019). Credible answers 
to causal questions are of course not only of interest to 
economists, but also to researchers in other fields as well 
as to the private sector. Therefore, it is not surprising that 
methods development and applications appear almost 
simultaneously in many research fields, such as computer 
science, econometrics, epidemiology, marketing, and sta-
tistics, as well as in the private sector. In the remainder of 
this non-technical paper, I will describe the main meth-
ods of Causal Machine Learning that became popular in 
econometrics as well as showcasing their use with a par-
ticular empirical example.

In the next section, I compare a special type of Machine 
Learning, namely Supervised Statistical Learning, to clas-
sical econometrics. In Sect. 3, I zoom in on a special case, 
namely a static binary treatment model identified by 
so-called selection-on-observables assumptions. In this 
context, I discuss some important estimation approaches 
for various aggregated and disaggregated causal effects. 
Subsequently, in Sect.  4, an evaluation study of train-
ing programmes for unemployed in Flanders is used to 
show some of the potential of these methods in practice. 
This application is followed in Sect.  5 by more general 
considerations about the usefulness and limits of Causal 
Machine Learning and how its usefulness depends on 
various features of the study and the chosen research 
design, i.e. the specific set of identifying assumptions 
entertained by the researcher. The last section concludes 
and points to some of the many issues that are still unre-
solved and can hopefully be resolved in future research.

Many topics are omitted from this brief overview. For 
example, I will not discuss the use of Causal Machine 
Learning (CML henceforth) in the private sector, 
although many firms, particular in the tech industry, cur-
rently build up substantial capacity for development and 
application of these methods (e.g. Athey & Luca, 2019). 
Furthermore, I will discuss a generic but simple causal 
set-up, namely the static binary treatment models, thus 
excluding for example the important field of continu-
ous treatments (e.g. Klosin, 2021). Furthermore, I will 
ignore more complicated causal designs and mechanism, 
such as mediation (e.g. Farbmacher et al., 2022), modera-
tion (e.g. Bansak, 2021), networks (e.g. Graham, 2020), 
dynamic sequences of treatments (Bodory et  al., 2022b; 
Lewis & Syrgkanis, 2020), as well as dynamic learning 
(bandits, reinforcement learning, e.g. Kasy & Sautmann, 
2021; Kock et al., 2022). Furthermore, I will not discuss 
the discovery of causal structures (e.g. Soleymani et  al., 
2022). I will also not discuss the use of Machine Learn-
ing either to generate variables (e.g. from text, pictures, 

2 Admittedly, despite these encouraging trends, there is still substantial room 
for improvement as the current debate about a replication crises and p-hack-
ing exemplifies (e.g. Brodeur et al., 2020).
3 Moore’s law stating that the number of transistors on a microchip roughly 
doubles every two years still holds at least approximately (e.g. https:// www. 
brita nnica. com/ techn ology/ Moores- law).

https://www.britannica.com/technology/Moores-law
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or natural language) that can subsequently be used in 
causal analysis or for prediction purposes, or both. Some 
of these topics are already discussed in the recent excel-
lent surveys by Athey and Imbens (2019) and Mullaina-
than and Spiess (2017), among others.4

2  Machine Learning and classical econometrics
Machine Learning is a vast and not very well specified 
field that had its origins in computer science. The rele-
vant subfield for econometric predictions (and the basis 
of Machine Learning empowered causal analysis) is Sta-
tistical Learning. For example, the classical textbook by 
Hastie et al. (2009)5 discusses the major methods in this 
field. The main idea of statistical learning methods is to 
use flexible specifications to find structure in the data. In 
Unsupervised Statistical Learning, all variables stand on 
the same footing for that task. Thus, the structure has to 
be found from all variables simultaneously by exploiting 
their associations in some way, for example as in cluster 
analysis.6 In Supervised Statistical Learning (SSL), we 
know more in the sense that we have a variable we want 
to predict (outcome variable, y) and other variables that 
will be used for this prediction (covariates, x).7 Therefore, 
(implicitly) the task is to find structures in the covariates 
space that lead to good predictions of the outcome vari-
able. Within SSL, the specific methods also differ related 
to what a ‘prediction’ is: while for continuous outcomes, 
a conditional expectation is a natural target, for discrete 
outcomes one may want to focus either on the condi-
tional probability of a specific event happening (Regres-
sion), or explicitly predict specific values of the discrete 
outcome variable (Classification). CML methods have 
their origins in both types of SSL.

For regression SSL, the goal is to find a function f(x) 
such that it approximates the true conditional expecta-
tion of y given x well. As in nonparametric economet-
rics, there are two ways to approach this problem. The 
first approach consists in globally approximating f(x) 
with a flexible function, like some polynomial. For exam-
ple, series estimation in nonparametric econometrics, 
and ordinary least squares (OLS) and logit in parametric 
econometrics belong to this class of estimators. The alter-
native is a local approach: for each specific value of x of 
interest, say x, take the mean of y for observations that 

have values close to x and use these means as estimator 
of f(x). In nonparametric econometrics, kernel regression 
belongs to this class of estimators.

What are examples of important SSL methods? Let us 
start with an extension of the most generic econometric 
method, namely OLS. In this extension, the linear speci-
fication of (f(x) = xβ) is kept, but the objective function 
of OLS is amended. Instead of minimizing the average 
squared difference of the realized and predicted values 
of y (i.e. the mean squared error) only, a penalty term 
is added. This penalty term increases with the absolute 
magnitude of the coefficients. Such methods are called 
shrinkage methods as they shrink coefficients relative to 
OLS and were known before SSL existed in its current 
form. Their names and properties depend on the type of 
penalty. For example, LASSO (Least Absolute Shrinkage 
and Selection Operator; Tibshirani, 1996) penalizes the 
absolute values of the coefficients. If the squared values 
instead of the absolute values enter the penalty, then this 
is Ridge Regression (Hoerl & Kennard, 1970). If both pen-
alties are combined, we obtain Elastic Net (Zou & Hastie, 
2005). These estimators share some properties: (1) from 
a computational point of view, the dimension of x can be 
larger than the sample size; (2) they are very likely to do 
better than OLS in predicting y in an out-of-sample mean 
squared error sense (if the penalty is well chosen); and (3) 
the estimates of the coefficients of xβ are usually biased 
and inconsistent. LASSO has the additional property that 
it may set some of the estimated coefficients explicitly to 
zero. Thus, in this sense LASSO may also perform vari-
able selection. How good or bad these methods perform 
in specific situations depends on properties of the data 
generating process (DGP). However, a more detailed dis-
cussion is beyond the scope of this introductory paper.8

Neural networks for regressions are based on con-
nected systems of such shrinkage methods. Technically 
speaking, they have not much to do with how the brain 
works but approximate f(x) very flexibly, using a huge 
number of parameters and nonlinear functions. Subse-
quently, they regularize heavily to obtain good predic-
tions. Currently, deep neural networks (deep implies a 
network architecture that leads to a very high degree of 
flexibility) are among the stars of the prediction scene in 
the sense that they may be able to predict (or classify) y 
very precisely.

As already mentioned, the local approach to predic-
tion and classification is based on using x to find neigh-
bourhoods in which observations have similar values of 

4 Recently, several books and survey articles appeared that discuss many 
aspects of Causal Machine Learning, like, for example, Chernozhukov et  al. 
(2023), Huber (2023), Kreif and DiazOrdaz (2019), Lieli et al. (2022), and Shah 
et al. (2021).
5 A less technical alternative is the textbook by James et al. (2013).
6 In other words, all variables are on the same footing and the classical (in 
econometrics) y–x-distinction does not exist.
7  In many cases, y will we one dimensional and x will be multidimensional.

8  An important role plays the so-called sparsity of the true DGP. There are 
different versions of sparsity that all imply that a low number of variables (out 
of the possibly very large number of variables available) is sufficient to predict 
y well.
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y, and use the mean of y in this region as predictor for 
the y’s of observations with values of x that belong to 
this neighbourhood as well. The key question to answer 
with this type of approach is on how to form such neigh-
bourhoods such that the resulting estimators have good 
predictive properties as well as remain computationally 
tractable. A Classification And Regression Tree (CART, 
Breiman et al., 1984) fulfils these criteria. The main idea 
of a CART is to create a sequence of binary splits until 
the remaining stratum satisfies some condition, like a 
minimum size of the leaf (leaf = stratum). The splits are 
created by considering all possible binary splits that can 
be created by each variable separately. Of all possible 
binary splits, the one is chosen that minimizes some cri-
teria, like the mean square error reduction resulting from 
the particular split. The combination of all chosen splits 
forms the ‘tree’. There is bias-variance trade-off which has 
to be addressed when building such trees: the smaller the 
single leaf, the more homogenous the observations inside 
the leaf will be, but the larger the variance of the sample 
mean of y coming from this leaf.

Due to the sequential nature on how they are formed, 
trees may be unstable. A small change in the data may 
lead to a different first split and thus a different tree. Fur-
thermore, predictions from trees are non-smooth func-
tions of x. Random forests (RF; Breiman, 2001) overcome 
these two problems and improve substantially on the 
prediction power. The main idea is to average predictions 
from many different trees. To obtain different regression 
trees, the different trees are built on random samples 
from the original data (bootstrapped or subsampled). 
Furthermore, for each single splitting decision, a random 
sample subset of the splitting variables is considered only. 
Each tree used for a RF is ‘deep’ (i.e. small), implying that 
the prediction from the leaf has very low bias. The vari-
ance is reduced by averaging over the decorrelated trees. 
Built in this way, random forests turned out to be a very 
powerful, and yet simple, prediction methods.

What are the main differences between econo-
metrics (EM) and SSL? It begins with the object of 
interest: While EM is typically interested in estimat-
ing low-dimensional parameters (e.g. causal effects, 
demand elasticities, regression coefficients that have 
some deeper economic meaning), SSL is optimized 
towards getting a good prediction of the outcome vari-
able, y. Why does this difference matter? It matters 
mainly because SSL can check how good the estima-
tor performs by comparing the predictions of y with 
the realizations of y. There is no chance to do this with 
a parameter that is unknown. At best, we may have a 
prior about plausible ranges, but we never know the 
true value. Therefore, statistical theory is much more 
important for EM estimators. It acts as a main tool to 

judge the quality of an estimator in a specific appli-
cation, for example, by considering its location and 
uncertainty. From this perspective, it may not be sur-
prising that for some very popular SSL methods that 
are known ‘to work well’ for many DGPs, deriving the 
(asymptotic) statistical properties turned out to be dif-
ficult, if not (so far) impossible. This need for inference 
has another implication on whether an estimator is 
considered as being acceptable for empirical analysis by 
econometricians: With increasing sample size (asymp-
totically), the squared bias of such an estimator must 
vanish faster than the variance, otherwise the confi-
dence intervals will not be centred around the truth, 
and inference will be misleading. Such restrictions play 
no role in SSL. Thus, an MSE minimal estimator may be 
perfectly fine for SSL, while it may not be attractive for 
EM. This loss of predictive power is the implicit price 
to pay for obtaining inference.

While predicting-a-parameter vs. predicting-some-
observable-quantity is a major difference of EM and 
SSL, there are other differences as well. SSL procedures 
tend to be considerably more flexible than EM mod-
els. They may allow for many nonlinearities, lots of 
unknown coefficients as well as for far more variables 
(even exceeding the number of observations that are 
available for estimation). In contrast, in EM students 
are trained to avoid too flexible models as they tend 
to overfit and thus mislead the researcher and to use 
parsimonious specifications instead (e.g. the famous 
Occam’s Razor).

For the very flexible models in SSL, overfitting the 
model to the data at hand is a potentially very danger-
ous threat. Thus, all predictions are assessed on data 
that were not used for estimation (call ‘learning’ in SSL 
terminology), i.e. in an out-of-sample assessment. Such 
samples are generated either by a single random sample 
split or by cross-validation. EM usually does not make 
use of such data splits and relies mainly on in-sample 
assessments.

A final (subjective) difference is that the more illus-
trative names of SSL estimators are likely to be much 
more appealing to a non-specialist audience (e.g. neural 
network, random forest) than the technical terms used 
typically by EM (e.g. ordinary least squares).

3  Methodology for the prototype model
3.1  Notation and identification
In this section, we focus on the simplest causal model 
to show the main ideas of important CML approaches. 
We use Rubin’s (1974) potential outcome language to 
describe the so-called static binary treatment model 
under unconfoundedness (e.g. Imbens, 2004).
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Let D denote the treatment indicator, which is either 
0 (control) or 1 (treated). The (potential) outcome of 
interest that realizes under treatment d is denoted by 
Yd. For each member of the population, we observe 
only the potential outcome related to the received 
treatment, Y = (1− D)Y 0 + DY 1.9 There are two 
groups of variables to condition on, X̃  and Z. X̃  con-
tains those covariates that may be needed to correct for 
selection bias (confounders), while Z contains variables 
that define subpopulations for which an average causal 
effect estimate is desired.10 X̃  and Z may overlap in any 
way. Denote the union of the two groups of variables by 
X, X = {X̃ ,Z} . The dimension of X equals p, which is 
treated as fixed (potentially large).

Next, we define three types of average causal effects at 
different levels of granularity:

First, the individualized average treatment effects 
(IATEs), IATE(x) , measure the mean impact of the treat-
ment for units with specific covariate values x. The IATEs 
represent the causal parameters at the finest aggregation 
level of the features available. On the other extreme, the 
average treatment effect (ATE) represents the population 
average at large. The ATE is (or was?) the classical param-
eter investigated in econometric causal studies. The 
group average treatment effect (GATE) parameters are in 
between those two with respect to granularity. The ana-
lyst preselects the variables Z before estimation accord-
ing to her policy interests. The IATEs and the GATEs are 
special cases of the so-called conditional average treat-
ment effects (CATEs).11

In our setting of unconfoundedness, a necessary con-
dition for the identification of these causal parameters 
is that all variables that jointly influence treatment and 
potential outcomes are observable (conditional inde-
pendence). Such confounders must not be influenced by 
the treatment (exogeneity). Furthermore, for all values of 
such confounders, there must be a non-trivial probability 

IATE(x) = E(Y 1 − Y 0|X = x),

GATE(z) = E(Y 1 − Y 0|Z = z) = IATE(x)fX |Z=z(x)dx,

ATE = E(Y 1 − Y 0) = IATE(x)fX (x)dx.

of becoming treated or non-treated (common support). 
Finally, the potential outcomes must not be influenced 
by the treatment allocation (stable unit treatment value 
assumption, SUTVA). An important implication of these 
assumptions is that exogenous unobservables have the 
same distribution for treated and controls conditional on 
the observed confounders. Clearly, the credibility of such 
an identification strategy depends on the specific applica-
tion. From now on, we suppose that all these conditions 
are met. In this case, the causal parameters of interest are 
identified, i.e. they can be expressed in terms of random 
variables, for which we sample data (i.e. for i = 1, …, N, we 
observe xi, yi, di). For the IATE(x), we obtain the follow-
ing such expression (estimand):

Since GATEs and ATE are just averaged versions of the 
IATEs, and since realizations of X and Z are observable, 
they are identified as well.

Before discussing the estimation of these parameters, 
it is worth pointing out that Machine Learning methods 
only have an indirect role at the identification stage of 
the empirical analysis. First, they may be useful to gen-
erate additional variables from other sources, such as 
texts or figures. Second, their use in the estimation stage 
may allow to consider a larger number of actual variables 
(such as different measurements of distances) than in a 
conventional analysis that may require to keep the num-
ber of variables small.

3.2  Estimation
Once identification is credibly achieved, estimation fol-
lows. Assume for simplicity that we have a sample of N 
independent realizations from (Y, D, X), {yi, di, xi}Ni=1 . The 
last equation shows that the estimation of these causal 
parameters is a combination of prediction problems (i.e. 
estimating g(x, 0) and g(x, 1) which are conditional 
expectations of observable variables). This insight may 
suggest using the following (naïve) Causal Machine 
Learning estimator: (1) estimate ĝ(x, 1) with your favour-
ite SSL method among the treated, (2) estimate ĝ(x, 0) 
with your favourite SSL method among the controls, and 
finally, (3) estimate the IATEs as their difference, 
ÎATE(x) = ĝ(x, 1)− ĝ(x, 0) . ATEs and GATEs are 
obtained from the respective sample averages, i.e. 

ÂTE =
1

N

N∑
i=1

ÎATE(xi) and ĜATE(z) = 1

Nz

N∑
i=1

1(zi = z)

ÎATE(xi) (for discrete Z), where NZ is the number of 
observations with observed value z and 1(·) denotes the 
indicator function.

IATE(x) = E(Y |X = x,D = 1)

− E(Y |X = x,D = 0)

= g(x, 1)− g(x, 0),

9 If not obvious otherwise, capital letters denote random variables, and small 
letters realized values. Small letters subscripted by ‘i’ denote the value of the 
respective variable for observation ‘i’.
10  ˜X  may also contain variables that are predictors of effect heterogeneity 
only.
11 Similarly, we can also define these parameters for different treatment 
groups to obtain, for example, average and group average treatment effects 
for the treated. Beyond this, there are more parameters used in the litera-
ture, like quantile treatment effects. However, for the sake of brevity we 
focus on ATE, GATE(z), and IATE(x) only.
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Although such an approach may provide a good start-
ing point, it has some drawbacks. The first potential 
problem is bias. Standard SSLs that minimize the mean 
squared error may be biased asymptotically, despite 
being consistent, in the sense that with increasing sample 
size the (squared) bias does not disappear faster than the 
variance. In this case, confidence intervals coming from 
the limiting distribution of such an estimator will not be 
centred around the true values, making valid inference 
difficult to impossible. Second, even without considering 
inference, the problem of estimating a difference is differ-
ent from estimating its components.12 Therefore, typical 
CML methods account for the specific structure of the 
causal estimation problem.

Next, we discuss more sophisticated estimation prin-
ciples. Since CML is popular in many fields, and dif-
ferent fields may have different standards of what they 
consider as being a ‘good’ estimator, in both theoretical 
and practical terms, many different CML estimators for 
the different parameters appeared in the literature. A full 
review goes beyond this overview. Instead, we focus on 
two general, comprehensive estimation principles that 
gained popularity in econometrics. They are ‘comprehen-
sive’ in sense that they allow the estimation of all param-
eters of interest either in one estimation step or in few 
tightly related estimation steps that use Machine Learn-
ing. These two comprehensive estimation principles are 
double/debiased Machine Learning (DML) and causal 
forests (CF). While DML uses predictive Machine Learn-
ing (SSL) inside a special moment condition, CF changes 
the standard random forest algorithm so that it can be 
used to estimate causal effects.13 Let us briefly discuss the 
main ideas of these two approaches.

Chernozhukov et al. (2018) introduced double or debi-
ased Machine Learning.14 The main idea is that we need 
to estimate two types of parameters. The first type is 
made of low-dimensional, structural parameters (such as 
ATEs or GATEs) which we deeply care about. However, 
there are also additional potentially high-dimensional 

parameters (nuisance parameters), which we do not 
care about. The estimation of the structural parameters 
is based on moment conditions that depend on the nui-
sance parameters as well as on the structural parameters. 
Chernozhukov et  al. (2018) show that if we choose spe-
cific moment functions that fulfil the so-called Neyman 
orthogonality condition, we can use a specific two-step 
procedure. Neyman orthogonality implies that small devi-
ations of the nuisance parameters from their true values 
do not matter for the estimation of the structural param-
eter. Thus, under certain conditions, for the purpose of 
inference for the structural parameters, estimates of the 
nuisance parameters can be treated as true values.

In the first step of the estimator, the nuisance param-
eters are estimated (‘learned’) by ‘good enough’ predictive 
Machine Learning (SSL). The main condition for being 
‘good enough’ is consistency and a convergence rate at 
least close to N1/4, which several SSL methods fulfil (e.g. 
certain random forests and neural networks).15 In this 
case, the estimation error from the first step SSL estima-
tion can be ignored when solving the moment condition 
for the structural parameters. The resulting estimator 
will be N1/2-consistent and asymptotically normal. If we 
use the influence function as the basis for these moment 
functions, DML is likely to result in efficient estimators.

How do such moment conditions look like for the esti-
mation of the ATE under unconfoundedness? It turns out 
that they correspond to moment conditions identical to 
those of so-called doubly robust estimators (e.g. Robins 
et al., 1994). Denote the conditional treatment probabil-
ity, i.e. the propensity score, by p(x) = P(D = 1|X = x), then 
an alternative estimand for the ATE can be obtained that 
it is instructive for doubly robust and DML estimation16:

Thus, a DML estimator for the ATE is the following:

ATE =EXE

[
g(X , 1)+

D(Y − g(X , 1))

p(X)

−g(X , 0)−
(1− D)(Y − g(X , 0))

1− p(X)

∣∣∣∣X = x

]

ÂTE =
1

N

N∑

i=1

[
ĝ(xi, 1)+

di(yi − ĝ(xi, 1))

p̂(xi)

−ĝ(xi, 0)−
(1− di)(yi − ĝ(xi, 0))

1− p̂(xi)

]

12 To see this, e.g. consider the case when both g(d,x)’s are highly nonlinear 
and thus difficult to estimate, while the treatment effect is constant. Since any 
estimation error of g(1,x) and g(0,x) that cancels due to differencing does not 
matter, clever joint estimators of g(1,x) and g(0,x) may lead to more precise 
estimators than treating the estimation of g(1,x) and g(0,x) as independent 
estimation problems.
13 Lechner and Mareckova (2023a, 2023b) provide a more detailed over-
view over these comprehensive CML methods.
14 DML is closely related to target maximum likelihood (van der Laan and 
Rubin, 2006) combined with Machine Learning which is popular, for exam-
ple, in biostatistics.

15 If some SSLs converge faster, other SSLs may be allowed to converge slower.

16 Double robustness in its classical use means a misspecification of the 
parametric model of either g(.) or p(x) does not matter for consistency if at 
least one of the two models is correctly specified.
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The potentially high-dimensional nuisance functions 
ĝ(xi, 1) , ĝ(xi, 0) , and p̂(xi) are estimated by suitable SSL 
methods. This estimator is N1/2-consistent, asymptoti-
cally normal, and asymptotically efficient.17 Inference is 
also straightforward and computationally inexpensive.

Knaus (2022) shows how to use this approach in com-
putationally efficient ways in empirical applications to 
estimate ATEs, GATEs, and low-dimensional parametric 
approximations of IATEs (and more). He also discusses 
further subtleties of the estimation which are beyond 
the scope of this paper. In summary, the advantage of 
the DML approach for low-dimensional parameter esti-
mation is that we can leverage the power of flexible off-
the-shelf Machine Learning methods while retaining a 
complete asymptotic distribution theory. Even when the 
dimension of the parameter of interest increases, like in a 
GATE with one or more continuous variables, DML may 
still have good properties, but the resulting estimators 
may have lower convergence rates (i.e. Zimmert & Lech-
ner, 2019).

Meanwhile, many researchers work on extending DML. 
There are general theoretical extensions (e.g. Chernozhu-
kov et  al., 2022a, 2022b) as well as extensions to other 
treatment types and models, like continuous treatments 
(e.g. Klosin, 2021), dynamic models (e.g. Bodory et  al., 
2022b; Lewis & Syrgkanis, 2020), quantile treatment 
effects (Kallus et al., 2020), or mediation analysis (Farb-
macher et  al., 2022), to mention only a few important 
ones.

While DML inserts standard predictive Machine 
Learning estimators into moment-condition-based esti-
mators, causal trees (CT, Athey & Imbens, 2016) and 
causal forests (CF, Wager & Athey, 2018) adapt Machine 
Learning algorithms to the causal question. This works 
particularly well for experiments and unconfoundedness, 
because in these cases the effect estimates are based on 
treated and controls with similar values of the covariates. 
This similarity of covariate values of different observa-
tions is also a defining feature of a (final) leaf of a CART. 
Thus, the main difference between a CART and a CT is 
that the latter computes average outcome differences of 
treated and controls (with or without propensity score 
weighting) in the final leaves and uses a splitting crite-
rion adapted to causal analysis. This adapted splitting 
rule is based on maximizing treatment effect heterogene-
ity instead of minimizing the (squared) prediction error. 
The variance-bias trade-off in a CT also requires finding 

an optimal leaf size that is small enough to make the bias 
small but not so small that the variance of the estimator 
become too large.

However, CTs are rarely used in applications for the 
same reason as RF may be preferred to CARTs for predic-
tion tasks. As in a RF, final leaves in a CF are small and, 
thus, bias is low. This is possible because the variance of 
the prediction from a single leaf is reduced by averaging 
over such predictions from many randomized trees. As 
in RF, randomization of these (deep) trees is done by ran-
domly selecting splitting variables and by inserting ran-
domness via the data used in building the tree. However, 
while trees in RF are typically estimated on bootstrap 
samples, the theory of CF requires to use subsampling 
(i.e. sampling without replacement) instead. Another 
important concept used is ‘honesty’, i.e. the data used to 
build the CT is different from the data to compute the 
effects given the CT. This is achieved by sample splitting. 
Under various additional regularity conditions, estimated 
IATEs from such CF’s converge to a normal distribution 
centred at the true IATEs. As usual GATEs and IATEs 
are then obtained by averaging.

The modified version of the CF (MCF) proposed by 
Lechner (2018) and theoretically analysed by Lechner 
and Mareckova (2023a, 2023b) uses a different split-
ting rule. The MCF also exploits the fact that CT and 
CF estimators can be expressed as weighted sum of the 
outcomes, where the weights directly follow from the 
algorithm. Thus, aggregating IATEs to GATEs and ATE 
amounts to aggregating the weights directly. The MCF 
exploits this feature of CF by using a weight-based infer-
ence procedure that allows one-step estimation and 
inference for ATEs, GATEs, and IATEs which turns out 
to be very convenient for applied work.18

Another popular approach that is somewhat in-
between CF- and DML-based estimators is the general-
ized random forest (GRF, Athey et  al., 2019). The main 
idea of GRFs is to obtain the parameters of interest from 
local maximum likelihood estimation, where specifically 
designed random forests are used to provide the local 
weighting scheme. As with DML, this approach is also 
directly applicable to settings other than unconfound-
edness, to different treatment parameters, and to more 
complex causal structures.

It is a practically important feature of the literature 
that the authors of the method papers provide users with 
implementations of their estimators in Python or R, or 
both (and sometimes even in Stata). Fairly user-friendly 
packages are, for example, described (1) in Bach et  al. 

17 An additional condition for this approach to have good properties is that 
the observations used to evaluate the nuisance functions should not be used 
to estimate them (also called cross-fitting). This is achieved by using some 
form of sample splitting, e.g. cross-validation. Kennedy (2022) provides a very 
comprehensive as well as very instructive discussion of the theory of DML 
and how it can be applied to various models and parameters.

18 Lechner and Mareckova (2023a, 2023b) show (under certain regularity con-
ditions) consistency and asymptotic normality of IATEs, GATEs, and ATEs, 
as well as  N1/2-convergence of ATEs.
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(2022) for DML, (2) in Bodory et al. (2022a) for the MCF, 
and (3) in Athey and Wager (2019) for the GRF.

3.3  Decision‑making: optimal policy
One of the main advantages of CML estimators that 
appeared recently in the literature is that we obtain a 
much better picture of the underlying heterogeneity of 
the impact of a policy. While ATEs are informative on 
how the target population will gain or lose on average, 
GATEs might reveal subgroups, e.g. based on educa-
tion or gender, that benefit more than others, or might 
even be hurt by participating in the policy. This informa-
tion will subsequently help policy makers to reconsider 
the target population, redesign the allocation rules, or 
change the policy more fundamentally.

Even when the policy works as intended for such 
broadly defined target populations, there may still be 
room for potential improvements by using the fine-
grained information that is potentially contained in the 
IATEs. The subfield of CML that deals with such tasks 
comes under the headings of optimal policy, policy learn-
ing, or statistical assignment rules. The goal is to build an 
algorithm, or in more fancy language, an artificial intel-
ligence system (AI), that suggests if a specific person is 
participating in the policy. This decision is based solely 
on the observable information contained in x (or a sub-
set of x). This section attempts to show some important 
ideas and issues in this field. However, it will not be com-
prehensive at all (even less so than the previous sections), 
will remain on a very non-technical level (even though 
most of this literature is very technical), and will ignore 
most of this rapidly developing literature.

The key ingredients into such a stochastic decision 
algorithm are the following: (1) the objective function 
of the decision-maker; (2) estimates of individual policy 
impacts (which in many cases will be IATEs) for the rele-
vant population; and (3) possible constraints. Let us con-
sider them in turn.

The objective function is a function of outcomes. Usu-
ally, the policy maker is assumed to be risk neutral, mean-
ing that her objective (welfare) function is a weighted 
sum of the expected outcomes under a specific policy. 
However, this objective function may be adapted, for 
example, to allow for risk aversion, i.e. to integrate equity 
concerns, etc. For example, nonlinear transformations 
that give more weight to specific parts of the outcome 
distribution may be attractive (e.g. a certain amount of 
additional earnings of a poor person may be more impor-
tant to the policy maker than if a rich person gains the 
same amount).

The second ingredients are estimates of the policy 
effects as a function of observable features. When these 
policy effects correspond to the IATEs, it might appear 

natural to use the estimators discussed before. However, 
the fact that an estimator has good properties for the esti-
mation of the IATE per se, like consistency or asymptotic 
normality, does not necessarily mean that it also has good 
properties for the estimation of decision rules, which is a 
different statistical problem. In the language of SSL, this 
is a classification problem, not a regression problem (as 
for effect estimation).19 Furthermore, as the key informa-
tion for these algorithms comes from the IATEs, IATEs 
must be identified in the first place, usually ruling out 
research designs that identify effects only for specific 
subgroups, such as difference-in-differences (identifica-
tion only for the treated), instrumental variables (only for 
compliers), or regression discontinuity designs (only for 
the population around the discontinuity).20

Furthermore, there may be constraints that need to be 
incorporated into the algorithm. Such constraint might 
relate to the resources available. Furthermore, fairness 
and antidiscrimination considerations may play a role. 
Such issues could sometimes be tackled by omitting some 
critical values from the covariates used to decide the allo-
cation (e.g. by not using information on race or gender). 
However, as such variables may also be correlated with 
many other variables, this does not always solve the prob-
lem. In addition, there may be certain restrictions pecu-
liar to the specific application that should be considered. 
Finally, there may be computational constraints. While 
efficient classification-type algorithms are available for 
certain standard situations with a binary treatment, this 
is not the case for multiple treatments or even more com-
plex treatment models.

The seminal paper for the current literature in this field 
is Manski (2004). He systematically investigates how to 
build and theoretically evaluate algorithms that perform 
decision making under uncertainty. Hirano and Porter 
(2020) provide a nice overview over this literature. Some 
of the methods proposed in this literature link this deci-
sion problem to DML in the sense that they are using the 
same ingredients as DML uses for point estimation, i.e. 
the doubly robust score. Two examples of such papers are 
Athey and Wager (2021) for binary treatments and Zhou 
et  al. (2022) for multiple treatments. These two papers 
also address another issue that is important in practice. If 
such an AI system is used together with human decision-
makers, it is important that humans accept it as a help-
ful tool. For this to happen, it is helpful if the human can 
understand on which criteria the recommendation of the 
AI is based upon. Using low-dimensional (policy) trees 

19 Fernández-Loría and Provost (2022) explain the issues in more detail in a 
non-technical way.
20 This problem can be overcome if such designs are amended by (plausi-
ble) effect homogeneity assumptions that allow the extrapolation to the 
population of interest.
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could be a good way to communicate the results from the 
AI to the human, as suggested, for example, in those two 
papers.21

4  An example: active labour market policies 
in Flanders

In this section, we illustrate the usefulness of CML methods 
with an empirical example. This example is an evaluation 
study of the effects of active labour market programmes 
(ALMP) in Flanders. ALMP mainly aim at improving 
reemployment chances of individuals who became unem-
ployed. The programmes mainly consist of different types 
of training courses, subsidized employment opportunities 
in a protected sector, and some types of support for pri-
vate firms hiring such unemployed. Many countries run 
such programmes, and there is a large literature on their 
effects on earnings and reemployment chances (e.g. Card 
et al., 2018). The main questions that these papers attempt 
to answer can be simplified to ‘what works and for whom?’ 
and ‘who should we send to which programme?’. If we find 
good answers to these questions, we might improve the life 
situation of many unemployed as well as devise ways to use 
public resources more efficiently.

In Cockx et al. (2023), we investigate the effects of the 
training part of the Flemish ALMP based on administra-
tive data from the Flemish employment services covering 
a recent inflow of about 60,000 formerly employed indi-
viduals into unemployment. The field developed some 
standards on which types of control variables are needed 
(e.g. Lechner & Wunsch, 2013) to remove confounding in 
such application of European ALMP using administrative 
data. Based on these insights combined with our insti-
tutional knowledge about the caseworker-based selec-
tion process of unemployed into specific programmes in 
Flanders, we argue that the data is rich enough to be able 
control for all major confounders such that a selection-
on-observables strategy is plausible. For three of the four 
training types considered, this claim could not be rejected 
by a placebo study (see paper for details). Therefore, the 
summary of the results here is based on these three pro-
gramme types only (short vocational training, long voca-
tional training, and so-called orientation training). By 
concentrating on training programmes only, we are not 
able to give a full answer to the questions posed above. 
Instead, we investigate the more restricted choice between 
different types of training programmes (and no partici-
pation in any programme in the first 9  months of this 
unemployment spell). All results in Cockx et al. (2023) are 
based the Python version of the MCF algorithm.22

The first set of (selected) results relate to the average 
performance of the programmes and how this perfor-
mance evolves over time, in comparison with not par-
ticipating in any programme in a certain period. For this 
purpose, we estimate the average treatment effect (ATE). 
Since we have monthly observations of labour market 
states several years before and up to 30 months after pro-
gramme participation, we estimate an ATE for each of 
these 30 months separately. The corresponding results in 
Fig. 1 relate to the probability of being employed in first 
labour market in a particular month after the start of the 
programme. We find that after the usual lock-in effects 
in the first few months after programme start, all train-
ing programmes lead to positive effects, and such effects 
are largest for the short training programmes. This over-
all positive assessment is however subject to the caveat 
that the positive medium-term effects do not necessarily 
mean that the programmes are cost-effective, as cost data 
is not available in the data used.

Next, we are interested whether the effectiveness of 
the training programmes depend on the command of 
the local language. In other words, we want to estimate a 
GATE for the four different levels of proficiency of Dutch 
(which is the local language in Flanders) that are observ-
able in our data. We could perform this analysis for every 
post-treatment month, but to ease the presentation of 
the results we focus on an aggregate outcome measure 
instead. It is constructed by summing up the post-treat-
ment months in employment over the 30  months avail-
able. As a further difference to the previous figure, the 
results and their confidence intervals are presented as 
deviations from the ATE. In Fig. 2, we show the results for 
short vocational training compared to non-participation.

The GATEs shown in Fig.  2 indicate that effectiveness 
of the programmes declines with an increased proficiency 
in Dutch. Although this result appears to be clear-cut on 
its own, its correct interpretation is that the effectiveness 
of the training programme correlates with local language 
proficiency. The differences of the effects may or may be 
caused by language proficiency. The reason is the usual one, 
i.e. language proficiency itself correlates with variables that 
are not held constant for computing the different 4 GATEs, 
like migration background, human capital, for example.23,24

21 A related approach from the Machine Learning literature is Amram et al. 
(2022).
22 It is freely available on PyPI.

23 Bansak (2021) addresses this issue for experiments while Bansak and 
Nowacki (2022) focus on regression discontinuity designs. Bearth and Lech-
ner (2023) introduce a new parameter that keeps the other ‘background’ vari-
ables constant and call it MGATE (moderated GATE). They propose double 
Machine Learning estimation under unconfoundedness for the special case of 
a discrete mediator.
24 To avoid ex-post-data mining that would invalid any inference, the vari-
ables for which to compute the GATEs should be selected in advance (ide-
ally derived from theory), and they should be very few.
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The parameters at the finest level of granularity are the 
IATEs. They may also be used for an explorative analy-
sis of the structure of the causal heterogeneity. One way 
is to compute the IATEs for each value of x observed in 
the sample, cluster them into few homogeneous groups, 

for example, with a k-means++ clustering algorithms 
(Arthur & Vassilvitskii, 2007), as done in this empirical 
study, sort the groups according to their mean value of 
the IATEs, and then analyse moments or quantiles of the 
covariates in the respective cluster. This way, we may find 
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additional patterns of the covariates. However, this sim-
ple IATE-based data mining procedure is explorative in 
nature, and inference is not available.25 Of course, there 
are many alternative procedures that can be used to bet-
ter understand which variables are correlated with IATEs 
(like any regression method or the more sophisticated 
approach of Chernozhukov & Fernandez-Val, 2022). 
With respect to the findings in this application, the just 
described cluster analysis reflected only those differences 
that appeared already in the comparisons of the pre-
selected GATEs. Thus, no new causal heterogeneity was 
discovered.

Finally, the estimated IATEs (more precisely the under-
lying potential outcomes in the case of multiple treat-
ment like in this study), or (asymptotically) unbiased 
estimates thereof, could be used to investigate the qual-
ity of the observed allocation of unemployed. Here, we 
investigated several allocations based on the estimated 
IATEs. The goal was to compare the actual allocation to 
the ‘best possible’ allocation, a purely random allocation, 
as well as an ‘explainable’ allocation (in addition to sev-
eral other allocation schemes). In these simulations, we 
used the observed programme shares as upper bounds. 
This was to ensure that we investigated the gains 
through redistribution, instead of programme expan-
sion. Of course, we might be able to obtain interesting 
insights by simulations based on specific expansions or 
reductions of the programmes. However, without hav-
ing cost information, this appeared to be less attractive. 
Except for the random allocation, all allocations investi-
gated improved upon the observed allocation. The ‘best’ 
allocation has been computed by allocating the treat-
ment that has the highest potential outcome for the spe-
cific value of x. However, such a black-box-based AI may 
not be acceptable for caseworkers in the field; therefore, 
we investigated also an allocation based on a low-level 
policy tree (as proposed by Zhou et al., 2022). This easy-
to-understand but less efficient rule suggested to allocate 
specific types of unemployed migrants to short voca-
tional courses, unemployed with specific longer employ-
ment histories to long vocational courses, and not to use 
orientation training at all (for details, see Cockx et  al., 
2023).

In summary, this exercise led to useful information 
about the ALMP in Flanders that might be helpful in 
futures redesigns of the ALMP. Of course, this is just an 
example, and there are many other policies (or decision 
situations in general) for which such fine-grained hetero-
geneity and allocation analysis is very useful.

5  The promise of Causal Machine Learning 
and some of its limits

The first step in any causal analysis is to find a credible 
research design, i.e. a set of identifying assumptions such 
that the causal effects of interest are credibly identified 
for the population of interest. Does CML help with this 
task? Strictly speaking, and as already mentioned above, 
not really. In practical terms, it is still helpful, because (1) 
it may allow to include more covariates in the estimation 
and thus more confounders can be controlled for and 
(2) there is no need to impose additional unjustifiable 
parametric assumptions on all or parts of the estimation 
problem as it is necessary when using conventional para-
metric or semiparametric estimators.

The part where CML really shines is the flexible estima-
tion of causal effects at various aggregation levels, as well 
as employing the information on the fine-grained causal 
heterogeneity (IATEs) to obtain ‘good’ allocation schemes 
and decision rules. While the ATE is informative about 
the effectiveness of the policy at large, the GATEs help to 
better understand for which groups the policy is effective. 
The IATE-based optimal policy algorithms help to find 
better ways of targeting policies such that (ideally) the 
overall goal of the policy/decision-maker can be fulfilled 
in an optimal way. It is important to note that the litera-
ture has developed such that we now know key (asymp-
totic) statistical properties for most of the estimators and 
for some allocation algorithms. In certain circumstances, 
there is also the possibility to use the insights from dou-
ble/debiased Machine Learning to develop estimators 
that are asymptotically efficient by combining standard 
Supervised Statistical Learning procedures with a specific 
choice of moments for low-dimensional causal effects. 
These statistical guarantees provide a large sample safe-
guard against getting ‘crazy’ (i.e. too noisy, or inconsist-
ent) results from these new and sometimes very complex 
nonparametric methods.

The focus on unconfoundedness as identifying assump-
tion in Sects. 3 and 4 was on purpose because most of 
the literature has proposed methods for this case (and 
for experiments, which can be seen as a special case of 
unconfoundedness). The reason why this happened is 
likely related to the fact that the assumptions underlying 
experiments and unconfoundedness are strong enough 
to identify the marginal distribution of the potential 
outcomes conditional on covariates. Thus, in this case, 
we have enough information to go the full way from the 
estimation of effects at the different aggregation levels to 
devising allocation algorithms.

However, the literature is full of empirical studies with 
observational data for which unconfoundedness does 
not appear to be plausible. Thus, alternative identifica-
tion strategies are pursued. They may be less powerful, 

25 Chernozhukov and Fernandez-Val (2022) propose a more sophisticated 
procedure for this idea and derive valid inference procedures.
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but in the specific situations more credible, than uncon-
foundedness. We will consider the most important of 
such strategies (in their canonical form), i.e. differences-
in-differences (DiD), instrumental variables (IV), and the 
regression discontinuity design (RDD) in turn.26

DiD designs usually identify treatment effects for the 
treated subpopulation. As treated and non-treated obser-
vations may systematically differ with respect to unob-
servables (which is the justification for using DiD in the 
first place), this implies that assignment algorithms with 
are based on X only (as the treatment status is unknown 
before the assignment) are of little use. However, CML 
helps to estimate ATEs and GATEs efficiently by double 
Machine Learning (e.g. Chang, 2020; Zimmert, 2019).

In instrumental variable estimation (IV), the estimated 
causal effect is valid only for the subpopulation that 
potentially reacts to a (potential) change of the value of the 
instrument with a change of the treatment status. Since 
these so-called compliers are unobservable, it appears 
impossible to use such complier-specific effects to opti-
mally assign treatments without further assumptions.27 
A very powerful instrument that leads to 100% compli-
ance could of course solve this issue. Such instruments 
are rare, though. While CML is of limited use for finding 
optimal allocations, CML is useful for estimating ATE and 
GATE-like effects for the respective complier subpopula-
tion. CML may be particularly helpful when there is the 
need to control for many covariates to ensure the validity 
of the instrument, or when there are many instruments. 
Indeed, there is a large literature on using CML methods 
in IV. This literature started with a constant effect model 
(Belloni et al., 2012), but the GRF and DML methodolo-
gies could also be applied for IVs allowing for effect het-
erogeneity, as well as for estimating heterogeneous effects 
(Athey et al., 2019; Syrgkanis et al., 2019).

In regression discontinuity designs (RDDs), we either 
obtain identification of causal effects for the population 
local to the cut-off that provides the identification results 
(sharp RDD), or for the compliers among this local-to-
the-cut-off population (fuzzy RDD). If this cut-off is not 
of policy interest, allocation rules valid for such a popu-
lation appear to be less valuable. The estimation task in 
a RDD setting is usually to adjust for different values of 
a single so-called running variable. For this case, well-
established nonparametric procedures are available, and 
thus, the potential of CML appears to be low. Neverthe-
less, Kreiß and Rothe (2023) show that the information in 

other covariates that are predictive for the outcome can 
be used to improve the precision of estimator the causal 
effect.28

5.1  Conclusion and the road ahead
The new developments at the intersection of mod-
ern Machine Learning methods and causal analysis of 
policies, or decisions more generally, provide empirical 
researchers with a new toolkit that is substantially more 
powerful than what we had in the past. It does not only 
allow getting more robust and more precise estimates 
of average effects but also to systematically investigate 
the underlying fine-grained heterogeneity. This hetero-
geneity may then in turn be used to investigate and find 
allocation/treatment rules that decision-makers find 
optimal given their objective functions and constraints. 
This additional information should be very valuable to 
every decision-maker. In the sphere of public policy, they 
should help to improve the specific policies to reach their 
goals as well as leading to a more efficient use of public 
resources.

One might even go one step further and imagine using 
these tools to build a semi-autonomous process in which 
policies will be evaluated continuously and their content and 
allocation rules adapted accordingly. Whether the resulting 
artificial intelligence (AI) is allowed to make the decision 
autonomously or serves as additional information for human 
decision-makers will then depend of course on the quality of 
its decisions as well as on the preferences of those in charge 
of and subject to the policy.

Until we reach this utopian state sometime in the future 
(if ever), there are still many issues that require further 
research. Let me mention just a few of them: One open 
issue concerns the finite sample properties of the algo-
rithms. The statistical guarantees we have so far for the 
CML methods are asymptotic. There are only a limited 
number of studies that have systematically investigated 
the finite sample properties of various CML estimators.29 
This may be a particular concern for CML, as the estima-
tors allow for very flexible estimation approaches (such 
a CF or DML) which are likely to require larger samples 
than conventional parametric or semiparametric meth-
ods. This may or may not be a particular issue for the 
estimation of the allocation rules.

The next issue relates to tuning parameter choice. As 
most CML parameters depend on several tuning param-
eters, choosing them in a ‘good’ way may be of particu-
lar concern since the theoretical guidance on how to 

26 We consider the cases without any additional homogeneity assumptions. 
Such assumptions might allow to extrapolate the effects of the population for 
which they are identified to other populations, but they are usually difficult to 
justify in specific applications.
27 Qiu et  al. (2021) and Cui and Tchetgen Tchetgen (2021) provide such 
approaches.

28 CML can be used to obtain similar improvements in the experimental con-
text as well (Chiang et al., 2023).
29 One example is the paper by Knaus et  al. (2021) that investigate some 
estimators for the IATEs.
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determine the tuning parameters for CML, in contrast to 
conventional ML, is more limited.

Another open question is the relevance of common 
support issues and how to deal with them. Are different 
CML methods more, or even less sensitive to these issues 
than conventional methods? The suspicion is that the 
answer may be method specific, but systematic studies 
on this topic are still lacking. The practical issue is then 
how to best deal with situations in which we have limited 
(weak) or no common support? Is the choice of a robust 
estimator already (almost) enough (if it exists at all), or 
do we need to explicitly limit the scope of the analysis 
to a smaller population, and if so, how do we determine 
such subpopulation?30

The development of optimal allocation schemes also 
brings a couple of additional open issues. To start with, 
there are still many objective functions and types of 
constraints for which there are no or limited statistical 
guarantees and efficient computation is unclear. Compu-
tation is also an issue on its own. Many of these alloca-
tion algorithms are computational very complex and lack 
of efficient computation certainly restricts their use in 
practice. Another topic are the statistical guarantees that 
are different from the ones we are used to when consider-
ing point estimates. I believe, it is still an open issue how 
relevant they are in practical applications. Inference for 
such allocation algorithms also appears to be a particu-
lar difficult problem, where more research is certainly 
needed. Finally, all the topics that are relevant for AI in 
general are important here as well. These begin with bias 
(not the statistical one), discrimination, and fairness of 
the algorithms and end with the need to prevent misuse 
by intentional manipulation by backdoors, hacking, or 
other criminal activities.

In this paper, I have discussed the advantages and the 
potential of the CML toolkit. This leaves us with the ques-
tion of what will happen with the (still) classical toolkit, 
especially in microeconometrics. Think about matching 
or regression analysis. It is my guess that most of these 
methods will simply become irrelevant, at least when 
we analyse large data causally. For large data, the new 
CML methods, skilfully applied and well understood, are 
superior. If true, this has important implications for the 
teaching of econometrics that go beyond the now almost 
common sense that students of applied econometrics 
need much better, or at least different coding skills than 
in the past. It will require a substantial transformation of 
the econometrics curriculum.
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