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1. Introduction

Given the plethora of bias correction methods for the estimation of realized 
covariance and correlation that only work well under certain conditions, this 
paper proposes a different approach to the problem. We argue that the inherent 
data problems render point identification of realized covariance and correlation 
unreliable, especially when the level of asynchronicity and microstructure noise 
is high. Under such circumstances, the data only allows for partial identifica-
tion (Manski, 1995) of the realized covariance and correlation, whereas point 
identification of these measures requires prior assumptions about the data. Given 
the data limitations, partial identification analysis identifies the bounds that the 
mean of the distribution of interest lies in. Although conservative, the estima-
tion of bounds is a more robust approach when estimating realized correlations, 
because both econometricians and practitioners should be aware of the worst and 
best case scenarios when assumptions about the data conditions that are needed 
to yield point estimations cannot or should not be made.

The availability of high frequency data in recent years has allowed financial 
econometrics to shift away from parametric conditional variance and covariance 
estimation based on daily or weekly data towards nonparametric ex-post meas-
ures termed as realized measures. Barndorff-Nielsen and Shephard (2002) 
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and Mykland and Zhang (2006) have shown that as sampling intervals get 
smaller, the realized variance or covariance is a consistent estimator of integrated 
variation or covariation and has an asymptotic variance that is mixture normally 
distributed. In this paper we consider the realized correlation, which is analo-
gous to the realized covariance. It is almost trivial to state that the estimation of 
the correlation structure of asset returns is important for many areas in finance, 
such as in risk management and portfolio optimization.

The estimation of realized covariance (RC) encounters several problems. First 
of all, trading of different assets rarely occur simultaneously, i.e. trading is asyn-
chronous. This causes the realized covariance to tend to zero as sampling fre-
quency increases, a phenomenon termed as “Epps effect” (Epps, 1979). The most 
common approach to estimating realized covariance is to construct approximately 
synchronised pairs using either previous-tick interpolation or linear interpola-
tion. However asynchronicity renders these interpolated estimators to be biased 
(see e.g. Dacorogna et al., 2001) and Zhang (2011) derives the analytical bias 
of the previous-tick RC.

To correct for the bias due to asynchronicity, Barndorff-Nielsen et al. 
(2011) propose the incorporation of lead and lag autocovariance terms based on 
the idea that returns sampled at regular calendar time will correlate with pre-
ceding and succeeding returns on other assets even if the underlying correlation 
is purely contemporaneous. Another approach to dealing with asynchronicity is 
the Hayashi and Yoshida estimator (Hayashi and Yoshida, 2005) which accu-
mulates cross-products of all fully and partially overlapping event-time returns 
to obtain unbiased covariance estimators.

Unfortunately asynchronicity is not the sole problem that realized covariance 
and correlation encounter. A further problem is that high frequency data is char-
acteristically plagued by what is termed as “market microstructure noise”, a distor-
tion of the true latent efficient (or “frictionless”) price which according to classi-
cal market microstructure theory (O’Hara, 1995) should evolve as a martingale. 
The existence of market microstructure noise is explained by market frictions 
that distort efficient prices (Roll, 1984). These frictions could be induced by 
price discreteness, the existence of bid-ask spreads or the lack of liquidity. Market 
microstructure noise renders the true price process unobservable. Aït-Sahalia, 
Mykland, and Zhang (2005) and Zhang, Mykland, and Aït-Sahalia (2005) 
showed that the realized variance estimator (the realized covariance in the uni-
variate case) is biased in the presence of market microstructure noise, and the bias 
becomes larger as the sampling frequency increases. This led to the literature about 
obtaining the optimal sampling frequency to reduce the effects of noise in a bias-
variance tradeoff (see e.g. Zhou, 1996; Bandi and Russell, 2008).
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To deal with the combination of both problems, methods such as subsam-
pling (Zhang, Mykland, and Aït-Sahalia, 2005), pre-averaging (Jacod et 
al., 2009) and the two- and multi-scales estimators (Zhang, 2011) have been 
proposed to restore consistency of the estimators. Voev and Lunde (2007) pro-
posed a bias correction method for the Hayashi and Yoshida estimator in the 
presence of dependent microstructure noise while Nolte and Voev (2009) pro-
pose a least squares approach to obtain the unbiased integrated volatility or 
co-volatility. Griffin and Oomen (2011) however showed that under a high 
enough noise level and low degree of correlation, the previous-tick RC that is not 
bias-corrected may be more efficient in terms of log mean-squared error than 
the Hayashi and Yoshida estimator and the lead-lag estimator of Barndorff-
Nielsen et al. (2011).

Whichever the bias-correction method of the realized covariance and correla-
tion, they require making some assumptions about the data problems and these 
assumptions may or may not be fulfilled in practice. We take instead a conserva-
tive approach by seeking identification bounds in the spirit of Manski (1995) on 
the previous-tick covariance estimator and the corresponding realized correlation. 
The issue of asynchronicity is regarded as a missing data problem because in the 
case of the previous-tick estimator, the problem is that the true latent price of one 
or more assets is not observed at the sampling time. We use the partial identifica-
tion approach of Horowitz and Manski (2006) for incomplete data to obtain 
bounds of the identification region. The presence of microstructure noise can be 
regarded as a data corruption or contamination problem because the issue is that 
the sampling process is a distortion of the true latent price process. We use the 
approach by Horowitz and Manski (1995) for the treatment of contaminated 
and corrupted data to estimate the identification region.

The estimated bounds provide the worst and best case scenarios that can be 
found using information that the data provides without having to make assump-
tions about the inherent data problems. They require no structure to be imposed 
on the sample space and are attempts to guard against the worst outcomes that 
the data problems could possibly produce by using ex-post knowledge of the data. 
Altogether this serves as a more robust approach to inference, which is especially 
valuable when the realized covariance and correlation are used for estimating 
other useful measures such as sharpe ratios or the Value-at-Risk.

The paper is organised as follows: Section 2 gives the mathematical description 
of the previous tick realized covariance and correlation as well as the subsampled 
estimator of Zhang, Mykland, and Aït-Sahalia (2005); Section 3 describes 
the idea of partial identification, how we apply such identification analysis to 
estimate bounds of the realized covariance and correlation when the problems 
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of asynchronicity and microstructure noise are present in the data, some practi-
cal issues involved in the bounds estimation, and the forecasting of the bounds; 
Section 4 gives the results of a simulation exercise to study the efficacy of these 
bounds and their sensitivity to the tuning parameters; Section 5 gives an empiri-
cal application using two stocks, first describing the dataset and then the results 
of the bounds estimation and forecasting efficacy. Finally Section 6 concludes.

2. Realized Covariance and Correlation

Consider the price processes of two assets {Xt} and {Yt}. To estimate their inte-
grated covariation , ,TX Y
 �  the standard assumption is that both processes follow 
an Itô stochastic process with standard Brownian motion BX and BY. Further 
assume that the processes have a drift coefficient X

t	  and Y
t	  with instantaneous 

variance 2,X
t�  and 2, .Y

t�  Under such assumptions, the integrated covariation is 
given by 
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Barndorff-Nielsen and Shephard (2002) and Mykland and Zhang (2006) 
show that using the limit theorem for stochastic processes, an estimator for the 
integrated covariation is the realized covariance, 
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which is a consistent estimator as sampling intervals get smaller and has an 
asymptotic mixture normal distribution. The realized correlation RCorr is 
obtained by dividing realized covariance by the realized volatilities (square root 
of realized variances) of the individual assets: 
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RC is most commonly estimated using previous-tick interpolation (or last-tick 
interpolation) which was found to be less biased than linear interpolation (Dac-
orogna et al 2001). As the name implies, the previous-tick RC is simply RC 
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1� See Zhang (2011) which gives the analytical characterisation of the previous tick RC estima-
tor in the presence of asynchronous trading and microstructure noise. Analytical solution of 
the bias can be obtained by assuming that the transaction time arrival rates follow indepen-
dent intensity processes.

estimated using prices on or immediately preceding a regularly spaced sampling 
time grid.

Consider a fixed time period [0,T ], usually a single trading day, to have a reg-
ularly sampled time grid denoted by �N � [0,�  ], �N � {
0,
1,…,
MN

}, where MN is 
the sampling frequency, N is the total number of observations or transactions of 
both X and Y, and �t � 
i � 
i�1, �i, is the regular sampling interval that is con-
stant, for example 1, 5, or 10 minutes. Hence a 5 minutes RC refers to RC with 
�t � 300 seconds. We can view MN as a filter on N and it is a function of �t.

Let the irregular transaction times of X and Y be denoted by grids �A and �B 
respectively, with �A � {g0, g1,…, gA} and �B � {h0, h1,…, hB}. Hence N � A � B. 
Also, 0 � g0 � g1 �… ��gA��� and 0 � h0 � h1 �… ��hB�����The previous ticks 
are then defined to be ai � max{g � �A : g � 
i} and bi � max{h � �B : h � 
i}. The 
previous tick RC is thus given by 
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The bias of the previous tick RC due to asynchronicity alone (assuming no micro-
structure noise) is
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(Zhang, 20111), under the assumption that there is at least one pair of obser-
vations (g,h) within each [
i, 
i�1]. While this condition is usually satisfied for 
highly traded assets, it does not hold for less liquid assets or in times of sudden 
liquidity shortages (‘liquidity black holes’) and inconsistency of the bias-corrected 
previous tick RC estimator results. Furthermore, the standard approach to char-
acterise the bias due to asynchronicity is to assume a Poisson arrival rate for an 
observation (i.e. a trade or quote) that is independent of the price process (see for 
example Assumption 2 in Griffin and Oomen, 2011, and Section 6 of Zhang, 
2011). Renault and Werker (2011) however showed that durations and price 
processes are not independent but exhibit instantaneous causality. This suggests 
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that the estimated bias due to asynchronicity would be inaccurate. The correc-
tion for the effect of microstructure noise involves empirical and theoretical 
modelling subtleties, because both microstructure noise and the efficient price 
are latent variables and a direct measurement of microstructure noise is not pos-
sible. Zhang (2011) derives the bias of the previous-tick RC due to microstruc-
ture noise by assuming additive noise processes, with the analytical solution being 
available when the noise processes of X and Y (
X and 
Y processes) are assumed 
to be independent white noise. However Phillips and Yu (2006) argue that the 
complexity of microstructure noise cannot be adequately captured by a simple 
white noise specification. They show that the properties of microstructure noise 
evolve over time, and may exhibit local non-stationarity and perfect correlation 
with the efficient price.

Zhang, Mykland, and Aït-Sahalia (2005) proposed subsampling the 
estimator which reduces the bias caused by asynchronicity and microstruc-
ture noise. The subsampled estimator ( )[ , ] avg

TX Y  is constructed by averag-
ing the estimators ( )[ , ] k

TX Y  across K grids, where the original regular spaced 
grid � is partitioned into K non-overlapping subgrids � ( ),  1, , .k k K� …  Con-
sider the original grid � 0 1{ , , , },

NM
 
 
� …  then the kth subgrid is given 
by � ( )

1 1 1{ , , , }.
N

k
k k K k M K
 
 
� � � � �� …  This creates K realized covariance esti-

mates ( )[ , ] , 1, ,k
TX Y k K� …  and the subsampled RC (ssRC) estimator is obtained 

by averaging: 
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and the corresponding subsampled RCorr (ssRCorr) estimator is 
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While there are many proposed methods (e.g. pre-averaging, realized kernels, 
etc.) for correcting the bias of the RC and RCorr estimators, we retain here only 
the subsample estimator as an indicative bias-reduced estimator. Our purpose is 
not to obtain bias correction but to obtain identification bounds on the RC and 
RCorr. Proper identification bounds would ideally, but not necessarily, include 
the RC and RCorr estimators as well as the the subsampled and other bias-cor-
rected RC and RCorr estimators.
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3. Identification Bounds of Realized Covariance/Correlations

Partial identification analysis departs from traditional robust statistics, which also 
deals with inference in the presence of data errors or problems. Robust estima-
tion considers the stability and sensitivity of the estimators when the underlying 
data distribution deviates from the distribution used in the assumed model, and 
the objective of robust estimation is to guard against worst outcomes ex ante. 
Partial identification analysis considers these data problems in an ex-post setting 
by giving the range of the possible values of the parameter of interest given what 
is known about the empirical distribution. The narrower the bounds, the more 
information they provide.

We deem identification analysis to be well-suited for application to RC and 
RCorr given that they are ex-post or realized measures. However, the bounds 
derived in Horowitz and Manski (2006) and Horowitz and Manski (1995) 
are made for the case of a static framework, where time-series effects are not con-
sidered. Time dependencies would complicate the analysis of the data problems 
since the errors in observations would also affect the next period’s observations 
(see for example Chen and Liu, 1993, and Tsay, Pena, and Pankratz, 2000). 
Fortunately for our case, RC and RCorr are derived under the framework of 
assuming that the returns follow Itô stochastic processes, with i.i.d. increments 
(Brownian motion increments are assumed). It then becomes reasonable to use 
identification analysis in a such a framework.

To investigate the effect of different data problems on the bounds, we derive 
the bounds under three cases: (i) asynchronous data without microstructure 
noise, (ii) synchronous data with microstructure noise, and (iii) asynchronous 
data with microstructure noise. While only the last case provides realistic bounds 
to RC, the first two cases allow us to observe the marginal effect of each data 
problem alone.

3.1 Bounds Due to Asynchronicity

Let the log returns be given as 
1

( )
i i i

Xr X X
 
 
 �
� �  and 

1
( ),

i i i

Yr Y Y
 
 
 �
� �  where 


i, i � 1,…,MN are points on a regular time grid within a day. When there are 
no observations within the vicinity of 
i, we consider the data to be “missing” 
at 
i. We term this vicinity as “tolerance” and it is a tuning parameter that 
determines the width of the bounds (see Section 3.3 for further discussion). We 
define four states of “missingness” and let integer valued random variable Zi 
represent the state of “missingness” of the data. Zi � 1 implies all components 
(both 

i

Xr
  and )
i

Yr
  are observed. Zi � 2 if 
i

Xr
  is missing (i.e. 
i

X 
  or 
1i

X 
 �  or both are 
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2� In reality, when �2 and �3 are small, consistent estimation of 
22kq and 

33kq is difficult. How-
ever as argued by Horowitz and Manski (2006), the effects of such imprecision are limited 
by the multiplication with the small �2 and �3.

3� Here maximising the objective function gives the upper bound and minimising the objec-
tive function gives the lower bound. This is not to be confused with a max-min optimisation 
problem.

missing) while 
i

Yr
  is observed. Zi � 3 if 
i

Yr
  is missing (i.e. 
i

Y
  or 
1i

Y
 �  or both are 
missing) but 

i

Xr
  is observed. Zi � 4 is when both 
i

Xr
  and 
i

Yr
  are missing.
Let the price pair be given by random vector ( , ).

i i i

X YV r r
 
�  Assume Vi is a 
discrete random variable with support {vj : j � 1,…, J}. Define �z � P(Zi � z) and 
pzj � P(Vi � vj | Zi � z). The sampling process identifies �z and p1 j for all j � 1,…, J. 
For z � 2, 3, 4, pzj is unidentified due to missingness of data, but it obeys certain 
restrictions. First of all, pzj � 0, z � 2, 3, 4 and 1 1,  2,3,4.J

j zjp z�� � �  For z � 2, 
rY is observed. Let the support of rY be given by �2, and suppose there are K2 dis-
tinct points in �2. Let 2 2kq  denote the probability of point k2 � �2 conditional 
on Z ��2. Then 

2: 2 2 2 22
,  1, , ,

jj v k j kp q k K�� � � …  where 2 2kq  is the marginal prob-
ability of 

i

Yr
  in state 2.
The same applies to z � 3, where this time rX is observed and rY is missing. Let 

�3 refer to the support of rX. 
33kq  denotes the probability of point k3 � �3 con-

ditional on Z � 3. Then 
3 3: 3 3 3 3,  1, , ,

jj v k j kp q k K�� � � …  where 3 3kq  is the mar-
ginal probability of 

i

Xr
  in state 3.2

The probability mass function of the returns vector is then given by
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1
( ) .i j z zjz

P V v p�
�
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The upper and lower bounds can be obtained by maximising and minimising 
the realized covariance or correlation with respect to the unknown probabilities 
(p2 j, p3 j and p4 j ) and computed using Vi over its support vj, j � 1.…, J subjected 
to the above given constraints.

3.1.1 Estimation of Bounds

The relevant optimisation problem for estimating bounds of realized covariance 
is given as3 
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 0,  1, , ,zjp j J� � …
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For realized correlation, the optimisation problem is: 
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The data sample allows identification of �z (for z � 1,…, 4), p1 j, 22kq  and 
33 .kq  The 

empirical estimators are 
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4� Horowitz and Manski (2000) derived the analytical solution for the optimization problem 
in the case of binary outcomes. Our problem here is however more complex.

5� Horowitz and Manski (2006) found that the genetic algorithm performs the optimization 
faster, but alternative global optimisation techniques such as simulated annealing may be used.

6� While the additive error/noise model is commonly used in realized measures literature for 
deriving biases in the continuous framework, we use this discrete error model here to help 
us conduct our analysis. This is only possible since we are working solely in the discrete time 
framework.

When 1
ˆ 0,� �  the right hand side of (10) is defined to be zero, and when ˆ 0z� �  for 

z � 2, 3, the right hand side of (11) is defined to be zero. The upper and lower 
bounds of RC and RCorr are then obtained by replacing 

21 2, ,z j kp q�  and 
33kq  with 

21 2
ˆˆ ˆ, ,z j kp q�  and 

33
ˆ

kq  and solving (7) and (8) respectively.
Analytical solutions of (7) and (8) are not possible4 hence we use numerical 

techniques to obtain the bounds. To achieve global optimization, we use the 
genetic algorithm5 in MATLAB to solve the nonlinear programming problem, 
and then refine the optimisation locally using constraint optimisation. Optimi-
zation at each time point (per day) is approximately 10 minutes for realized cova-
riance using a 2.66 GHz Intel computer, and 15 minutes per time point for real-
ized correlation. Asymptotically valid confidence intervals for the bounds may 
be obtained using bootstrap (see Horowitz and Manski, 2006, for details), but 
due to the huge computational time required, we do not do this here.

3.2 Bounds Due to Microstructure Noise

To examine the effects of microstructure noise alone, let us assume that the 
degree of asynchronicity is negligible. Let the product of the price pair be given by 
random variable .

i i

X Y
iW r r
 
� �  Let 

iW
  be a random variable representing micro-
structure noise that has an unknown distribution. The inferential problem is then 
that the true latent martingale price returns iW �  is not observed but Wi which is 
contaminated by 

iW
  with probability p. Let FW indicate the cdf of Wi. Then the 
sampling process only allows for the identification of FW 

 (1 ) ,
WW W

F p F pF
�� � �  (12)

where 
W

F �  is the distribution of the observations that belong in the efficient price 
distribution and 

W
F
  is the distribution of noise.6

If the occurrence of microstructure noise 
W can be assumed to be random 
and independent of the sampling process, then inference on FW can be assumed 
to be equivalent to inference on FW �. This is termed “contaminated sampling”. 
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7� While this bias term is obtained under the assumption that microstructure noise follows a 
white noise process that is independent of the price process, we can use this bias term to obtain 
a rough estimate of the percentage of microstructure noise in the data.

When this independence assumption is not made, it is termed the “corrupted 
sampling” model and is the more general model (i.e. wider bounds under a cor-
rupted sampling model than under contaminated sampling, see Horowitz and 
Manski, 1995). Both of these error models are commonly assumed in robust 
statistics. For example, the contaminated sampling scheme is assumed in obtain-
ing the influence function in robust statistics, while the corrupted sampling 
scheme is assumed in high-breakdown estimation (see a review by Pavel Čížek 
and Härdle, 2006). We consider here both the contaminated and corrupted 
sampling schemes.

Horowitz and Manski (1995) showed that for parameters which respect 
stochastic dominance, sharp bounds can be obtained under corrupted and con-
tamination sampling. RC respects stochastic dominance with respect to Wi, for 
Wi � R* where R* is the extended real line. This means that 1 2( ) ( )W WRC F RC F�  
when 1 2 .W WF F�

3.2.1 Estimation of Upper Bound of p

While we need not assume a value for p, the analysis requires that an upper bound 
of p can be estimated or known a priori. Denote this upper bound as �   1 such 
that � � max(�X, �Y), for pX � �X   1 and pY � �Y   1, where pX and pY are con-
tamination probabilities of X and Y respectively, and �X and �Y are their corre-
sponding upper bounds. To estimate the level of microstructure noise, we use 
Eq (14) of Bandi and Russell (2008) who derive the bias in realized variances 
(RV) due to microstructure noise7: 

 � 2( ) ( )N XE RV RV M E 
� �  (13)

where 2( )XE 
  can be estimated consistently using Theorem 2 (Bandi and Russell, 
2008): 

 2, 2

=1

1
( ) as .

MN
X p

j X N
jN

r E M
M


!!" "#�  (14)

This result is also obtained in Zhang, Mykland, and Aït-Sahalia (2005) and 
the intuition is that at very high sampling frequencies, the realized variance is a 
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consistent estimator of the variance of microstructure noise. Bandi and Russell 
(2008) propose using an average of bias estimation over n samples (rolling win-
dows can be used to allow time-variation in bias), but we will use the maximum 
estimated bias over the period to estimate the upper bound of microstructure 
noise �X and �Y separately and take � such that � � max(�X, �Y).

3.2.2 Estimation of Bounds

Under Proposition 4 in Horowitz and Manski (1995), the bounds of RC under 
contamination, RC(Wcont ), is given by

 , ,
=1 =1

( ) { }, { }
M MN N

cont i L i U
i i

RC W W W
$ %
& '� & '& '( )
� �  (15)

where Wi,L and Wi,U are random variables drawn from distributions 
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respectively.
For corrupted sampling, let ��# and �# be the limiting probability measures 

on W at �# and # respectively, then the bounds are 

 
2 2, ,

=1 =1

( ) ( ),  ( )
N NM M

corr i L i U
i i

RC W W W
$ %
& '� & '( )
� �  (18)

where 2 (1 )L L� ���#� � �  and 2 (1 ) .U U� ��#� � �
Consistent estimation of the bounds under contaminated sampling can be 

obtained by ˆ ˆ ˆˆ ˆ[0,1] [( ) (1 ), (1 )]W WF F� � �/ � � �  and the bounds under cor-
rupted sampling by ˆ ˆˆ ˆ[0,1] [ ,  ],W WF F� �/ � �  where ˆ

WF  is estimated using the 
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empirical cdf of W. The corresponding bounds for RCorr under the corrupted 
(RCorr(Wcorr)) and contaminated (RCorr(Wcont )) schemes are then obtained by 
dividing the bounds obtained in RC by the realized volatilities of X and Y.

3.3 Overall Bounds and Estimation Issues

We assume that the effects of asynchronicity and microstructure noise are inde-
pendent, separate data problems, and obtain overall bounds on RC and RCorr 
by summing the individual bounds. Since the bounds obtained due to micro-
structure noise alone are symmetric, we add half of the bound due to noise to 
the upper bound due to asynchronicity, and subtract half of the bound due to 
noise from the lower bound due to asynchronicity to obtain the overall bounds 
on RC and RCorr, i.e. 

 overall asyncronicity
noise noise

1

2( )
U U

U L
� �

�

and

 overall asyncronicity
noise noise

1

2( )
L L

U L
� �

�
,

where Up and Lp refer to upper and lower bounds due to p effect.
In reality, these two effects may not be independent and may be instanta-

neously causal for each other. Then the actual overall bounds may be narrower 
than what we estimate here, given that we are measuring these effects ex-post – 
some of the effects of asynchronicity would already be included when estimating 
the bounds due to microstructure noise and vice versa. By adding the bounds 
of the two effects, we would likely obtain a more conservative estimate of the 
overall bounds. From our empirical application (see Section 5), we find that this 
method gives rather tight bounds, hence we do not delve further into the issue 
of instantaneous causality of the two effects.

Estimation of the bounds encounters several issues: First, for computational 
tractability in estimating bounds due to asynchronicity, the support of the returns 
is assumed to be finite, but in theory the support is [�#, #]. What this entails 
is that if there is a large proportion of missingness that in reality would lie out-
side the support of the observed returns, the width of the bounds would be 
underestimated.

Second, the estimation of bounds is subjected to error due to discretization of 
the support. In our applications, we used 10-by-10 bins for approximating the 
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8� Refer to Corsi (2003) and Corsi (2009) for more information about HAR models.

two-dimensional support to obtain bounds due to asynchronicity. Finer dis-
cretization would reduce the degree of error but would require greater compu-
tational power.

Third, the overall width of the bounds is subject to two tuning parame-
ters. For bounds due to asynchronicity, the “tolerance” or vicinity of the grid 
for assigning “missingness” (i.e. if no observations are observed within x sec-
onds before the sampling grid, the observations are considered missing) is the 
tuning parameter. The smaller the tolerance chosen, the wider the bounds. 
At high tolerance levels and low asynchronicity, the bounds narrow towards 
the previous-tick RC. We consider a base case of 15 seconds for the 5 minutes 
RC and RCorr, or 5% of the sampling interval. For bounds due to microstruc-
ture noise, the tuning parameter is the upper bound of microstructure noise 
�. The higher the estimated or assumed �, the wider the bounds. Simulations 
in Section 4 will check the efficacy of these bounds and their sensitivity to the 
tuning parameters.

3.4 Forecasting Correlation and its Bounds Using HAR

Besides providing an identification region for an estimator, bounds could be 
useful in providing prediction of the region where the parameter could poten-
tially lie in. The forecasting of RC is a challenging issue because it is usually made 
in the context of forecasting the entire variance-covariance matrix, and in this 
multivariate dimension, the forecast model engages in problems with parameter 
proliferation and ensuring the positive definiteness of the variance-covariance 
matrix. Hence we consider forecasting realized correlations rather than realized 
covariance. Inherent in conducting the forecast of its bounds is the assumption 
that the degree of asynchronicity and microstructure noise remains constant.

We forecast realized correlations using the Heterogeneous Autoregressive 
(HAR) Model, a parsimonious model for modeling long-memory processes8. 
Realized correlations tend to empirically exhibit a high degree of persistence, 
hence HAR is a simple and suitable forecasting model (see for example Corsi 
and Audrino, 2007, and Vortelinos, 2010). The HAR model for forecasting 
the 1-step ahead realized correlations is given by 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 1

d d d w w m m
t t t t tRCorr c RCorr RCorr RCorr� � � 
� �� � � � �  (19)
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9� We forecast the bounds directly, and not obtain the bounds of the forecast RCorr.
10� For simplicity, we do not consider leverage effects.

where ( ),d
tRCorr  ( )w

tRCorr  and ( )m
tRCorr  are the daily, weekly and monthly realized 

correlations respectively. We obtain the weekly ( )wRCorr  and monthly ( )m
tRCorr  by 

taking averages of the last 5 and 20 days RCorr respectively.
We extend the application of the HAR model to forecast the bounds of realized 

correlations, i.e. we replace RCorr by the bounds Uoverall or Loverall
9. Estimation of 

(19) is made via ordinary least squares. To achieve multi-period forecasting, we 
use iterative forecasts to obtain the h-step ahead forecast.

4. Simulations

We simulate a bivariate Brownian process with zero drift and constant covariance 
using the Euler discretization scheme to obtain prices at 1 second intervals.10 The 
price process is then dP � � t

1/2dB, where � t
1/2 is the Cholesky factorisation of the 

covariance matrix � t and B is a (2 � 1) vector of independent standard Brown-
ian motions. The integrated covariance is then given by

 
1

0
.tIC dt� ��

To obtain non-synchronous price pairs, we simulate durations using independent 
Poisson processes with constant intensities �X and �Y. An additive noise process 
in the form of Gaussian white noise

 0, XX XY

XY YY

u N
� �
� �

� �� ���� � ��� � ��� � �� �� � �� �
∼

is added to the price processes.
We use simulation values

 
4 4

4 4

1.0 1.2

1.2 2.5

e e
IC

e e

� �

� �

� ��� ��� �� ��� �

which are close to what is observed empirically. Multivariate normal contempo-
raneously correlated noise is added with �XX � 1.0e�5, �YY � 2.5e�5 and � � �0.1. 
We use this simple simulation setup to evaluate the estimated bounds with respect 
to the RC estimators and the true RC.



206 Lidan Grossmass

Swiss Journal of Economics and Statistics, 2014, Vol. 150 (3)

4.1 Bounds’ Sensitivity to Asynchronicity

There does not exist at present a standard measure for the degree of asynchronic-
ity, hence we use simple simulated trials to observe the effect of the tuning param-
eter on the estimated bounds due to asynchronicity. Figure 1 plots the width of 
5 minutes RC bounds due to asynchronicity against tolerance using simulated 
data with asynchronicity alone for 3 cases: (i) �X � 1, �Y � 105 (durations of X 
and Y are 1 and 5 seconds respectively), (ii) �X � 1, �Y � 1010 (durations of X 
and Y are 1 and 10 seconds respectively) and (iii) �X � 105, �Y � 1010 (durations 
of X and Y are 5 and 10 seconds respectively). Cases (i) and (iii) have the same 
approximate degree of asynchronicity (differences in durations are 4 and 5 sec-
onds respectively), while case (ii) has the greatest degree of asynchronicity (with 
difference in durations of 9 seconds).

Figure 1 shows that as expected, for all three cases, the width of bounds 
decreases as tolerance increases (i.e. as the vicinity of what we consider ’miss-
ing’ becomes narrower, the estimated bounds become wider). Second, bounds 
of case (ii) are wider than bounds of cases (i) and (iii), and width of case (iii) is 
larger than case (i), which confirms that the greater the degree of asynchronicity, 
the larger is the width of the bounds. Third, although case (i) and case (iii) have 
approximately the same degree of asynchronicity, the width of case (iii) is much 
larger than case (i), which suggests that the lower the intensities of the arrival 
rates (i.e. larger durations), the larger the width of the bounds. This is intuitive 
since the lower the intensity, the greater the probability that no observations will 
be observed within the vicinity or “tolerance” of the grid.

4.2 Bounds’ Sensitivity to Level of Microstructure Noise

We now turn to the sensitivity of bounds due to the effect of microstructure noise 
alone. Figure 2 shows the 5 minutes RC and its bounds with synchronous obser-
vations for 100 simulated days using constant noise-signal ratios of 10% (p � 0.1, 
Fig. 2a) and 20% (p � 0.2, Fig. 2b). The horizontal solid line close to the x-axis 
is the true RC, the solid fluctuating line is the previous-tick RC and the dotted 
line that exhibits lesser fluctuations than previous-tick RC is the ssRC. The ssRC 
tends to lie consistently under the true RC, hence the ssRC still incurs a bias but 
it is much less biased than the previous-tick RC.

The inner and outer bounds are the bounds under contaminated and cor-
rupted sampling respectively (bounds under the corrupted sampling scheme are 
wider than those under the contaminated sampling scheme, see Section 3.2). 
The bounds provide total coverage of the previous-tick RC and ssRC. For the 
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true RC (solid constant line), the bounds under the corrupted sampling scheme 
provide 100% coverage, but under contaminated sampling, it is less that 100%. 
This implies that the bounds under contaminated sampling are not as reliable in 
the inclusion of the true RC. This also applies when adding a 20% microstruc-
ture noise (Figure 2b).

Finally, as expected, the bounds widen as the level of additive microstructure 
noise increases. This is observed in Figure 2 where the bounds in (b) are wider 
than those in (a).

4.3 Overall Bounds and Sampling Frequency

Figure 3 shows simulations under 10% microstructure noise (p � 0.1) and asyn-
chronicity of �X � 105 and �Y � 1010 (X and Y have 1 and 10 minute durations 
respectively). The estimations of the 5 minutes RC is given in Figure 3a while 
the 1 minute RC is given in Figure 3b. The tolerance is set at 15 seconds (i.e. if 
no observations are within 15 seconds of the grid, the observation is considered 
“missing”).

Figure 1: Plots of the Width of 5 min RC Bounds due to Asynchronicity against 
Tolerance (Vicinity of Grid) Using Simulated Data without Noise
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Notes: Three cases are plotted here: (i) �X � 1, �Y � 105 (1 and 5 sec durations) (dotted line), (ii) 
�X � 1, �Y � 1010 (1 and 10 sec durations) (dash-dot line) and (iii) �X � 105, �Y � 1010 (5 and 10 
sec durations) (solid line).
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Figure 2: True RC (Dotted Line), Previous Tick RC (Solid Black Line), s 
sRC (Solid Grey Line) and Estimated Bounds under Microstructure Noise 

alone at 5 Minutes Sampling Intervals

Additive microstructure noise is at (a) 10% and (b) 20% noise-signal levels. Estimated bounds 
assume the corrupted sampling scheme (light grey area) and contaminated sampling scheme 

(darker grey area).
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Figure 3: Estimated RC and overall bounds for 100 simulated days using additive 
microstructure noise of 10% (p � 0.1), �X � 105, �Y � 1010 at (a) 5 minutes sampling 

intervals and (b) 1 minute sampling intervals
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For both cases, the bounds provide complete coverage under both types of 
sampling (except for one day in Figure 3a under contaminated sampling). The 
bounds under 1 minute sampling (Figure 3b) are wider than those under 5 min-
utes sampling (Figure 3a). This is expected as under 1 minute sampling, there 
are more points on the sampling grid and hence a greater probability for “miss-
ingness” to occur. 

5. Data

For our empirical study, we use the NYSE TAQ quote data of Citigroup (c) and 
JP Morgan Chase (jpm) for the year 2007 (2 Jan 2007 to 31 Dec 2007), a total 
of 251 days. The mid-quotes during regular trading hours between 9.30 and 
16.00 are extracted. For multiple quotes within the same second, the average 
mid-quote is used.

Figure 4: Previous-Tick Realized Covariance Signature Plot

The realized covariance tends to zero as sampling frequency increases due to the Epps effect 
(observed here between 1–5 minutes). For previous-tick realized covariance, the effect  

of microstructure noise at the highest sampling frequency is also observed.
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Figure 4 shows the signature plot of realized covariance, which is a plot of the 
average realized covariance using different sampling frequencies. The x-axis gives 
the sampling frequency in minutes (i.e. �t, the interval between each sampling). 
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11� At very high sampling frequencies, only microstructure noise is measured, see for example 
Figure 1 in Bandi and Russell (2008).

The smallest sampling interval used is one second. The y-axis gives the average 
estimated previous-tick RC over the sample period. As is characteristic of real-
ized volatility signature plots, there is a large upward slope at very high sam-
pling frequencies due to the effect of microstructure noise11. This is in line with 
the asymptotic theory for microstructure noise by Bandi and Russell (2008). 
However for realized covariance, an additional Epps effect is observed between 
2–5 minutes sampling interval, where there is a bias towards zero as the sampling 
frequency increases. The RC stabilises at the 5 minutes sampling interval, hence 
we will use the 5 minutes RC and RCorr. 

Figure 5 shows the realized covariance and correlation of c and jpm at 5 min-
utes sampling frequency using the previous tick RC and subsampled estimator 
ssRC. The graphs show sharp increases in both covariance and correlations in 
the second half of 2007 due to the effects of the credit crisis. The previous-tick 
RC and ssRC also produce substantially different values for covariance and cor-
relations. This difference is more noticeable for realized correlations due to scal-
ing effects. 

5.1 Results

5.1.1 Estimated Bounds Due to Asynchronicity

We first present the results for bounds due to asynchronicity of data alone. If 
there are no observations within a “tolerance” vicinity of the sampling grid, we 
consider the observation as latent or “missing”. For our case, we set the tolerance 
level to 5% of the sampling interval �t. Since we use 5 minutes sampling fre-
quency, the state of “missingness” is conferred if there is no observed data within 
the last 15 secs of the sampling grid.

Figure 6 shows the average estimated probabilities obtained that are used to 
estimate the maximum bounds of realized covariance. The x- and y-axis give the 
jpm and c returns respectively, while the z-axis gives the average estimated prob-
abilities over the sample period. Figure 6a graphs the average observable prob-
abilities p1j (i.e. z � 1). It has a cone shape that peaks at the centre where returns 
are approximately 0 for both c and jpm. This is expected as 5 minutes intra-
day returns are relatively small with approximately zero mean. Figure 6b shows 
the average estimated probabilities at z � 2, where returns of c are observed but 
returns of jpm are missing. Peaks tend to be along the x-y axis, which gives the 
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Figure 5: Plots of the Previous-Tick (Dotted Line) and the Subsampled (Solid Line) 
Realized Covariance (Top) and Realized Correlations (Bottom) of The Sample Period 

Using 5 Minutes Sampling Frequency
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maximum covariance. Figure 6c gives the estimated probabilities at z � 3, where 
returns for jpm are observed but returns of c are missing. Since c is more fre-
quently traded than jpm, �3 tends to be small. Under �3 � 0, the probabilities 
do not enter the optimisation problem and are relegated to the first bin (small-
est c and jpm returns), hence giving the sharp peak at that corner. The rest of 
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12� Graphs are available upon request from the authors.

the probability surface is rather flat with some increase at the largest value for 
c and positive values of jpm. Figure 6d shows the average estimated probabili-
ties when both c and jpm returns are not observed. Again there is a peak in the 
first bin (smallest c and jpm returns) for days when �4 � 0 and another peak at 
the opposite end where both jpm and c returns are largest, which gives the larg-
est covariance.

Figure 7 shows the average estimated probabilities used to estimate the mini-
mum bounds of realized covariance. Figure 7a gives the average observable prob-
abilities p1j, which is the same as in Figure 6a. Figure 7b gives the probabilities 
for z � 2 when returns for c are observable and returns for jpm are missing. The 
peak occurs at the maximum value for c and the minimum value for jpm, which 
gives the smallest covariance. A smaller peak is observed at the largest value for 
jpm and smallest value for c which also decreases the value of realized covari-
ance. The peak at the first bin (small c and small jpm) is again caused by days 
when �2 � 0. Figure 7c gives the probabilities for z � 3. The large peak in the 
first bin is caused by days when �3 � 0, and there is some small increments along 
the negative c values and positive jpm values which gives smaller realized covari-
ances. Figure 7d gives the probabilities for z � 4 where both c and jpm returns 
are unobserved. Besides the peak at the first bin for days when �4 � 0, there are 
two peaks opposite each other at maximum jpm returns and minimum c and vice 
versa, which both give the smallest realized covariance. For realized correlations, 
the shapes of the probability surfaces are more complicated due to the division 
by realized volatilities (Eq. 8), but the analysis remains similar12.

The maximum and minimum bounds of the realized covariance and realized 
correlations due to asynchronous trading alone are plotted in Figure 8. As c and 
jpm are both highly traded stocks, the effect of asynchronicity is often small 
(maximum and minimum bounds are close to each other). For realized covari-
ance, the bounds tend to widen at points of sharp increases or decreases of RC. 
This implies that for sharp increase or decrease in return of one stock, trading of 
the other stock tends to temporarily slow down, hence resulting in unobservabil-
ity of its returns. This illustrates that asynchronicity is linked to an increase in 
investors’ uncertainty. Similarly for realized correlations, the bounds are observed 
to widen around the time of the onset of the credit crisis, implying greater uncer-
tainty during that period.
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Figure 6: Average Estimated Probabilities ˆ
zjp  for Estimating Maximum Bounds  

Due to Asynchronicity for Realized Covariance
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Figure 7: Average Estimated Probabilities ˆ
zjp  for Estimating Minimum Bounds  

Due to Asynchronicity for Realized Covariance
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Figure 8: Bounds on Realized Covariance RC (top) and Correlations RCorr (bottom) 
Due to the Effect of Asynchronicity

Upper bounds are represented by grey dashed lines while lower bounds are represented by solid 
black lines
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13� We use the result in Barndorff-Nielsen and Shephard (2004), Equation 28, to compute 
the confidence bands.

5.1.2 Estimated Bounds Due to Microstructure Noise

We estimate the percentage of microstructure noise as in Eq (13) and (14), and 
find the noise levels to be relatively low at about 1–2%, and also higher in the 
second half of the year. A sharp spike to over 11.5% is observed for c on 5 Nov, 
when Citigroup’s rating was downgraded by Moodys. We interpret this spike to 
be the degree of deviation from the true latent efficient process and take the upper 
bound of noise levels � to be 12%, in recognition that the percentage noise com-
puted here may not be precise due to assumptions involved in obtaining the bias 
term. We will check the reasonableness of this upper bound later. In any case, 
as argued in Horowitz and Manski (1995), even if there are no obvious ways 
to set a firm bound, it will still be useful to analyse the sensitivity of the bounds 
under different error probabilities.

Figure 9 plots the width of the bounds due to effects of microstructure noise 
alone under corrupted sampling (solid black lines) and contaminated sampling 
(grey solid lines). The bounds widen dramatically in the second half of 2007 due 
to the onset of the credit crisis. We also include the width of the 95% confidence 
bands (black dotted lines) of realized covariance13 for comparison, and find this 
to be rather close to that for corrupted sampling, which suggests that the confi-
dence bands of realized covariance capture roughly captures the uncertainty due 
to the effects of microstructure noise.

5.1.3 Estimated Overall Bounds and Forecast

Table 1 gives the percentage coverage rate of the overall bounds on the RC, 
ssRC, RCorr and ssRCorr estimators for the first half of 2007 up to 30 June (day 
1–124) and the second half of 2007 up to 31st December (day 125–251). The 
second half of 2007 will later be the out-of-sample period that is forecasted, while 
the first half of 2007 serves as the initial in-sample period. The coverage of the 
bounds under the corrupted sampling on the estimators in the first half of 2007 
is 100% but the coverage of the bounds under contaminated sampling is inad-
equate especially for the ssRCorr which has a coverage rate of 82%. This implies 
that microstructure noise cannot be regarded as statistically independent of the 
efficient price process, as was also concluded by Phillips and Yu (2006) and 
Barndorff-Nielsen et al. (2008). Market microstructure theory also predicts 
the noise process to be correlated with the efficient price process (see Kalnina 
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and Linton, 2006), hence our results here are not only unsurprising but also 
indicate that the bounds are tight and that the estimate of the upper bound of 
microstructure noise is reasonable. The coverage of the bounds during the vola-
tile second half of 2007 crisis period is less than 100%, with some observations 
exceeding the upper bounds. Coverage is however still above the 95% level for 
the corrupted sampling scheme.

Figure 9: Width of Bounds Due to Microstructure Noise for Realized Covariance

Black solid lines show width of bounds obtained under corrupted sampling, while grey solid 
lines show the width under contaminated sampling. The width of the 95% confidence bands 

(black dotted lines) are also included for comparison.
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Table 1: Percentage Coverage by Overall Bounds of the Previous-Tick Realized 
Covariance and Correlation (RC and RCorr) and Subsampled Realized Covariance and 

Correlation (ssRC and ssRCorr) under Corrupted and Contaminated Sampling

Realized Covariance Realized Correlations

% coverage 1st half 2007 2nd half 2007 1st half 2007 2nd half 2007

overall bounds RC ssRC RC ssRC RCorr ssRCorr RCorr ssRCorr 

corrupted 100 100 99.21 95.28 100 99.19 95.28 96.85

contaminated 100 98.39 96.06 83.46 90.32 82.26 87.40 83.46
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14� An explanation for the asymmetry in RCorr could lie in the fact that the measured correla-
tion is rather high but the upper bound cannot exceed 1. This however does not explain the 
obvious asymmetry observed for RC.

Figure 10 plots the overall bounds due to asynchronous data and microstruc-
ture noise for realized correlations under corrupted sampling. RCorr (black lines) 
and ssRCorr (grey lines) estimators are also graphed. It shows that the RCorr 
estimators lie closer to the upper bounds than the lower bounds. The same is 
observed for RC. This asymmetry suggests that not only is the noise process cor-
related with the efficient price process, its distribution in reality is also positively 
skewed, which causes the estimated RCs to lie higher than if noise were normally 
distributed (see for example simulation in Section 4 where this is the case)14.

Figure 10: Overall Bounds on Realized Correlations

Grey areas show the overall bounds under corrupted sampling for microstructure noise. RCorr is 
given by the black lines and ssRCorr is given by the grey lines.
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Table 2 shows the initial in-sample estimates of the HAR model for RCorr, ssR-
Corr and their bounds. The Newey-West standard deviations using four lags are 
given in brackets. The coefficients for weekly and monthly correlations are insig-
nificant due to the small sample size used (e.g. for monthly correlations there 



220 Lidan Grossmass

Swiss Journal of Economics and Statistics, 2014, Vol. 150 (3)

are only six observations) such that the effects of long memory are harder to be 
captured by the model.

To obtain out-of-sample 1- and 10-step forecasts for the second half of 2007, 
we use rolling windows of 124 observations (approximately 6 months) to esti-
mate the parameters. Iterated forecasts are used to obtain 10-step ahead fore-
casts. The predictive mean square error (PMSE) of the 1- and 10-steps forecasts 
are shown in Table 2. PMSE for the bounds are larger than PMSE for RCorr and 
ssRCorr. However for multistep forecasting, the worsening in terms of PMSE as 
compared to the 1-step forecast is less severe for the bounds than RCorr and ssR-
Corr. This feature suggests that bounds can be effectively forecasted for longer 
periods ahead with greater certainty as compared to point estimators. In terms 
of coverage, coverage at 1-step forecast is equally good as the actual coverage (see 
Table 1) and at 10-step forecast, although there is a slight reduction in percent-
age coverage, it remains above 90%.

Table 2: HAR In-Sample Estimations for Realized Correlations and Bounds and Out-
Of-Sample Forecast Evaluations. Newey-West Standard Errors with 4 Lags Are Given in 

Parentheses.

In-sample HAR coefficient estimates

RCorr ssRCorr Lower Bound Upper Bound

c 0.1835 (0.0759) 0.1756 (0.0713) 0.0494 (0.0272) 0.2356 (0.1039) 

�(d ) 0.2396 (0.1162) 0.3451 (0.1235) 0.1639 (0.0987) 0.3509 (0.1007) 

�(w) 0.4398 (0.2105) 0.2228 (0.2200) –0.0369 (0.2469) 0.2578 (0.1869) 

�(m) –0.0312 (0.2217) 0.1016 (0.2269) 0.5738 (0.4054) 0.0718 (0.2161) 

PMSE (Out-of-sample) 

RCorr ssRCorr Lower Bound Upper Bound

1 step 10 step 1 step 10 step 1 step 10 step 1 step 10 step 

0.0172 0.0263 0.0143 0.0222 0.0444 0.0487 0.0225 0.0328 

Percentage coverage by forecasted bounds (Out-of-sample)

1 step 10 step 1 step 10 step

RCorr 96.85 93.22 ssRCorr 96.85 91.53

Newey-West standard errors with 4 lags are given in brackets.
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5.2 Economic Significance

Identification bounds can find use in many problems in finance, and is especially 
interesting for risk management and portfolio allocation problems, where risk 
managers and portfolio managers consider these worst- and best- case scenarios 
given the data problems when using realized correlations. For market risk man-
agers who are required to report the 1- and 10-day Value-at-Risk (VaR), defined 
as the next period’s forecast loss with a certain probability, the above forecast of 
the identification bounds could be used instead or in addition to VaR when data 
problems are more severe.

To illustrate the economic value to portfolio allocation, we consider the port-
folio optimization problem of a risk-averse investor who wants to minimize the 
portfolio volatility targeting a certain return. His optimal portfolio is then the 
solution to 

 ˆmin  s.t.  and 1
t

t t t t t p tw
w H w w r w	 �� � �� �  (20)

where wt is the n � 1 vector of portfolio weights for n assets at time t, ˆ
tH  is the 

estimated conditional covariance matrix at time t, rt is the n � 1 vector of returns 
of the individual assets at time t, 	p is the target return and � is an n � 1 vector 
of ones. By solving (20) for different 	p, the efficiency frontier for his portfolio 
can be constructed.

Figure 11 shows the efficient frontiers constructed using RC (black solid line), 
its overall bounds (upper bound: dashed line, right; lower bound: grey line, 
extreme left), as well as using its 95% confidence bands (dash-dotted lines) for the 
c-jpm asset pair in 2007. The plots are averages across the sample period of 251 
days and are given in annualized percentages. The risk-return tradeoff is generally 
pessimistic due to the credit crisis which impacted both of these stocks negatively. 
The plots however shows the worst- and best-case scenarios to be more optimistic 
than implied by the confidence bands. It also shows that the efficiency frontier 
of the portfolios estimated using RC lies closer to the upper bound (worst-case 
scenario) than the lower bound (best-case scenario). While a portfolio manager 
might consider the 95% confidence band on the left to be overly conservative, 
he might deem the upper bound scenario to be realistic, worth planning for and 
informing his investors about.
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Figure 11: Portfolio Efficiency Frontiers with Returns on the y-Axis and Standard 
Deviation on the x-Axis (Both Are Annualized in %) 
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Notes: The efficient frontiers are constructed using RC (black solid line, middle), upper (dashed 
line, right) and lower (grey line, extreme left) identification bounds and 95% confidence levels 
(dash-dotted lines). All plots are averages across the sample period of 251 days.

6. Conclusion

Estimating realized covariance and correlations is problematic due to data prob-
lems of asynchronous observations and microstructure noise. While different 
bias-correction methods exist, they often involve making assumptions about the 
latent noise process and quote/trade arrival-time process. This paper posits that 
rather than attempting to obtain point identification of the estimators that have 
to be bias corrected, a more robust approach can be used by way of partial iden-
tification (Manski, 1995).

We identify bounds due to the presence of asynchronicity by using the par-
tial identification approach of Horowitz and Manski (2006) for missing data 
and the bounds due to microstructure noise by using the approach of Horow-
itz and Manski (1995) for treatment of contaminated and corrupted data to 
estimate the identification region. The bounds due to microstructure noise are 
estimated under two different error models: the contaminated sampling and the 
corrupted sampling schemes, where the contaminated sampling scheme makes 
the additional assumption that the error process is random and independent of 
the sampling process.
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Our simulation study shows that bounds provide good coverage of the RC and 
RCorr estimators and their bias-corrected estimators via subsampling. Further-
more, we show how the tuning parameters in the estimation (namely the toler-
ance used to assign missingness and the assumed upper bound of noise levels) 
influence the widths of the estimated bounds.

We show via an empirical application that the overall bounds under the cor-
rupted sampling scheme provide a high degree of coverage of the estimators and 
the subsampled estimators both in the pre-crisis and in the crisis period. How-
ever under the contaminated scheme, the coverage is unsatisfactory, which indi-
cates that the noise process cannot be assumed to be independent of the efficient 
price process. This result is expected under market microstructure theory and in 
line with findings of Phillips and Yu (2006) and Barndorff-Nielsen et al. 
(2008). This gives indication that the estimated bounds are tight, and that the 
estimate of the upper bound of microstructure noise is reasonable.

We forecast the bounds of the realized correlations using the HAR model 
(Corsi, 2003) for 1-step and 10-step periods, and find that the forecasted bounds 
are tight with excellent coverage despite dealing with data during the volatile 
crisis period. While the accuracy of point estimators declines greatly under the 
10-step forecast, the tightness and coverage of the bounds remain stable under 
multistep forecasting.

Applications of these bounds can be in financial risk management, such as for 
forecasting of the VaR, and in portfolio management, where best- and worst-case 
scenarios can be more reliably drawn when data problems are prevalent.
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SUMMARY

This paper argues that the inherent data problems make precise point identifi-
cation of realized correlation difficult but identification bounds in the spirit of 
Manski (1995) can be derived. These identification bounds allow for a more 
robust approach to inference especially when the realized correlation is used for 
estimating other risk measures. We forecast the identification bounds using the 
HAR model of Corsi (2003) using data during the year of onset of the credit 
crisis and find that the bounds provide good predictive coverage of the realized 
correlation for both 1- and 10-step forecasts even in volatile periods.




