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Abstract 

We study the interplay of non-pharmaceutical containment measures, human behavior, and the spread of COVID-19 
in Switzerland. First, we collect sub-national data and construct indices that capture the stringency of containment 
measures at the cantonal level. Second, we use a vector autoregressive model to analyze feedback effects between 
our variables of interest via structural impulse responses. Our results suggest that increases in the stringency of 
containment measures lead to a significant reduction in weekly infections as well as debit card transactions, which 
serve as a proxy for behavioral changes in the population. Furthermore, analyzing different policy measures individu‑
ally shows that business closures, recommendations to work from home, and restrictions on gatherings have been 
particularly effective in containing the spread of COVID-19 in Switzerland. Finally, our findings indicate a sizeable 
voluntary reduction in debit card transactions in response to a positive infection shock.
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1  Introduction
The number of COVID-19 cases worldwide passed the 
100 million mark at the end of January 2021. The num-
ber of deaths associated with the virus reached 4 mil-
lion at the end of June 2021. The emergence of additional 
infection waves suggests that early removal of non-phar-
maceutical containment measures may have had a huge 
impact on the number of cases and deaths. However, 
many governments are reluctant to take stronger meas-
ures due to economic concerns and public disapproval.

In this paper, we analyze the relationship between non-
pharmaceutical containment measures, the spread of 
COVID-19, and public behavior in Switzerland. Com-
pared to other European countries, Switzerland imposed, 
on average, less stringent measures despite being just 
as affected. In addition, Switzerland consists of 26 can-
tons, each of which enjoys extensive political autonomy. 

Especially the cantonal heterogeneity in the implemen-
tation of COVID-19-related containment measures pro-
vides an interesting environment to study the impact of 
mitigation measures. We exploit this cantonal variation 
to estimate the effects of containment measures on the 
spread of COVID-19.

The contribution of this paper is twofold. First, we col-
lect cantonal data on non-pharmaceutical containment 
measures and construct an index capturing the strin-
gency of these interventions. In particular, we closely 
follow the classifications used for the Oxford Strin-
gency Index (Hale et al., 2020), but deviate in a number 
of dimensions to account for the Swiss setting.1 Second, 
we use the constructed indices to analyze the interplay 
between containment measures, public behavior, and 
the spread of COVID-19 in Switzerland using a vec-
tor autoregressive model (VAR) that accounts for the 
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relationship of current and past observations of all vari-
ables in the system. In particular, our VAR model allows 
for feedback effects between containment measures, 
public behavior and the spread of COVID-19.

The results indicate that an increase in the stringency 
of non-pharmaceutical measures induces significant 
and sizable reductions in COVID-19 infection growth. 
A 10-unit increase in policy stringency results in a 34% 
reduction in weekly infections after six weeks. When 
considering different measures individually, we find 
that workplace and business closings as well as restric-
tions on gatherings are particularly effective in contain-
ing the spread of COVID-19. Further, stricter measures 
lead to a decrease in debit card transactions, which prox-
ies behavioral changes in our model. A rise in infection 
growth leads to a policy reaction in the form of stricter 
containment measures by federal and cantonal govern-
ments. Similarly, the public reacts and decreases con-
sumer spending. Our findings indicate that up to half of 
the reaction is voluntary.

In our analysis, we divide the evolution of the pan-
demic in Switzerland into four phases. Phase 1 denotes 
the ‘extraordinary situation’ and spans from March 16, 
2020, to June 19, 2020.2 During this first wave, the fed-
eral government mandated all COVID-19-related restric-
tions. Phase 2 begins after the extraordinary situation and 
ends with the termination of the federal ban on large-
scale events on September 30, 2020. During this phase, 

case numbers were relatively low and many of the fed-
eral measures were relaxed, if not lifted. The third phase 
ranges from October 1, 2020, to January 17, 2021, and 
describes the second wave of the pandemic. Most can-
tonal variability is situated in this phase. Since June 20, 
2020, the federal level effectively defined minimum non-
pharmaceutical intervention measures and each canton 
decided for itself, depending on the local situation and its 
interpretation, to what extent it would go beyond these. 
This effectively ended on January 17, 2021, when the Fed-
eral Council implemented much more restrictive meas-
ures, thereby eliminating cantonal differences. Hence, the 
subsequent Phase 4 spans from January 18, 2021, to April 
18, 2021, and is not only characterized by comprehensive 
federal restrictions, but also by the national vaccination 
campaign and the spread of the virus mutant B.1.1.7, 
nowadays called Alpha, first detected in the UK. On April 
19, 2021, several policy relaxations became effective, such 
as the opening of restaurant terraces and indoor sport 
and cultural venues, marking the start of gradual easing. 
The evolution of the weekly infection incidence over the 
course of the four phases is shown in Fig. 1.

We limit our analysis to Phases 3 and 4 for multiple 
reasons. First, the effective reproductive number Re , 
which we use to measure infection growth, only became 
available for all cantons by the end of March, thereby 
excluding the most important part of Phase 1. Addition-
ally, the first wave constitutes an unexpected shock. The 
following phases are potentially quite different and more 
relevant for the future from a policy perspective. Moreo-
ver, the low level of infection incidence during Phase 2 
entails high estimation uncertainty of Re . More impor-
tantly though, such low levels of incidence likely suppress 
the reaction of policy and behavior to changes in infec-
tion growth. In contrast, for the remaining Phases 3 and 
4, most of the time the 14-day incidence was far above 

Fig. 1  Weekly infection incidence. The weekly infection incidence reflects the number of confirmed cases per 100,000 residents during the 
respective week. The number of confirmed cases is provided by OpenZH (https://​github.​com/​openZH/​covid_​19)

2  The extraordinary situation is according to Article 7 of the Epidemics Act 
declaratory in nature and reaffirms the Federal Council’s constitutional com-
petence at the legislative level to make use of the right of emergency (accord-
ing to Article 185 paragraph 3 of the Federal Constitution). The constitutional 
right of emergency allows the Federal Council to order appropriate measures 
quickly and on a case-by-case basis in the event of unforeseeable, acute and 
serious threats to public health that may endanger the internal security of the 
country.

https://github.com/openZH/covid_19


Page 3 of 24Pleninger et al. Swiss Journal of Economics and Statistics           (2022) 158:5 	

a critical value of 60 and thus, the public and political 
awareness of the epidemiological situation was enhanced.

The analysis is relevant from a policy perspective. First, 
the effectiveness of containment measures has potential 
economic, social and political effects. This argument is 
particularly apparent as governments are often hesi-
tant to impose stringent measures early on. Secondly, 
the results are important for potential future virus out-
breaks. Even though the origin of COVID-19 is still 
under investigation, many former and current epidemics 
are zoonotic, that is, the disease spreads between ani-
mals and humans. The reduction in natural habitat and 
the increase in deforestation, urbanization, travel and 
mass food production is expected to increase the occur-
rence of viral outbreaks (Altizer et al., 2013). Last, once 
a viral disease emerges, additional mutations in response 
to natural or vaccine-elicited immunity pose a contin-
ued challenge to its containment. Hence, studying effec-
tive policy tools to circumvent future spreads early on is 
highly relevant from an economic, social, political and 
health perspective.

The next section presents some closely related litera-
ture on COVID-19 and other epidemics. We describe the 
empirical methodology in Sect.  3. Our KOF Stringency 
Indices and all other data are presented in Sect.  4. In 
Sect. 5, we present our findings. Section 6 concludes.

2 � Related literature
Although numerous studies have appeared since the out-
break of the COVID-19 pandemic in 2020, the literature 
that includes the additional waves of 2020/2021 is still 
sparse at the time of writing. Subsequent waves of infec-
tion provide additional insights and may be more repre-
sentative for future outbreaks, as at least some level of 
preparation for further outbreaks has since been made. 
Before summarizing some relevant studies analyzing the 
COVID-19 pandemic, we first look into some based on 
the 1918 pandemic.

Hatchett et  al. (2007) analyze non-pharmaceutical 
interventions (NPIs) in 17 U.S. cities during the 1918 
influenza pandemic. They show that early interventions 
result in 50% lower peak death rates and less steep epi-
demic curves. The implemented interventions include 
closure of schools, churches and theaters. Similar results 
are reported by Bootsma and Ferguson (2007). They find 
a reduction in transmission rates of up to 30–50% in cit-
ies with comparably effective interventions, such as San 
Francisco, St. Louis, Milwaukee and Kansas City. How-
ever, the overall effect is only moderate, because—as 
they argue—measures were introduced too late or lifted 
too early. Related, Kremer (1996) shows that early pub-
lic health interventions help to mitigate an unfavorable 
steady state in which the transmission of AIDS prevails. 

In addition, Kremer (1996) suggests that public health 
measures should target highly active people to reduce the 
number of partner changes.

Studies looking at the current crisis find that contain-
ment measures have a reducing effect on transmission 
rates, confirmed cases and deaths. Gatto et  al. (2020) 
show that restrictions on mobility and human interac-
tions led to a decrease in transmissions by 45% in Italy. 
Similarly, containment measures in China aiming at the 
protection of the susceptible population were particu-
larly effective (Maier and Brockmann, 2020). In a cross-
country study, Deb et  al. (2020) report a reduction in 
the number of infections of up to 90% compared to the 
baseline scenario with no containment measures. In 
addition, they suggest that an immediate policy response 
significantly reduced the average number of cases and 
deaths. Huber and Langen (2020) find similar results for 
Switzerland. In particular, an earlier lockdown was more 
effective in reducing cumulative hospitalization and fatal-
ity rates. Caselli et  al. (2020) suggest a reduction in the 
number of cumulative infections of up to 58% after 30 
days of containment measures. The study also finds nega-
tive effects on confirmed cases after a period of 14 days. 
Similarly, Flaxman et  al. (2020) suggest that around 3.1 
million deaths have been averted until May 4, 2020, due 
to NPIs across 11 countries using a Bayesian hierarchi-
cal model. A related study by Brauner et al. (2021) ana-
lyzes the effects of individual NPIs. Their results suggest 
that school, university and face-to-face business closures 
as well as limits on gatherings were particularly effective. 
Chernozhukov et  al. (2021) suggest that in the absence 
of business closures, the number of cases would have 
been 17–78% higher. Finally, Hsiang et  al. (2020) show 
that anti-contagion policies significantly and substan-
tially slowed infection growth. In particular, their results 
illustrate that early infections would have experienced 
exponential growth with growth rates of approximately 
38% per day in the absence of policy actions. Bradley 
et al. (2021) calibrate an equilibrium model for the labor 
market in the presence of a pandemic in the UK and find 
that a laissez-faire approach implicate a higher death toll 
while total employment experiences a drop. The latter is, 
however, less pronounced than under a lockdown policy.

With regard to a reduction in case growth, Bendavid 
et al. (2021) find no significant benefits of stringent meas-
ures, including stay-at-home and business restrictions 
(‘lockdown’), compared to more lenient interventions, 
such as testing, bans on gatherings and other social dis-
tancing recommendations. However, Égert et  al. (2020) 
and Acemoglu et al. (2020) suggest that selective contain-
ment measures that are targeted at the most vulnerable 
group in combination with increased testing lead to a 
reduction in deaths as well as economic losses.
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For the USA, Gupta et  al. (2020) find large declines 
in mobility in all states since the start of the COVID-19 
pandemic. Yet a large part of the decline is not related to 
government policies, as mobility also fell in states with-
out major restrictions and before any measures were 
implemented. Nevertheless, containment measures still 
have a significant effect on mobility reduction, where 
county policies had a larger impact than state policies. 
Both, Kraemer et al. (2020) and Tian et al. (2020) study 
mobility and travel restrictions during the Coronavirus 
pandemic in China. Kraemer et al. (2020) show that the 
spatial distribution of COVID-19 cases can be explained 
by human mobility data. Once mobility was restricted, 
the case growth turned negative. Related, the results 
in Tian et  al. (2020) indicate that the Wuhan shutdown 
led to a delayed arrival of COVID-19 in other cities by 
almost three days, thereby limiting the spread of COVID-
19 in China.

The effectiveness of government policies heavily 
depends on compliance by the population. This is par-
ticularly relevant for governments that focus on recom-
mendations rather than stringent restrictions. At the 
same time, some measures are hard to enforce, since 
monitoring would constitute a violation of privacy. There-
fore, when estimating the effects of non-pharmaceutical 
containment measures on COVID-19 infection rates, we 
include behavioral changes into the model. In the UK, 
Hacıoğlu-Hoke et al. (2021) find a drop in consumption 
even before lockdown measures were introduced. The 
decrease in expenditures was particularly pronounced in 
the top quartile of the income distributions.

3 � Methodology
In this section, we present our empirical approach to 
examine the interplay between COVID-19 infection 
growth (I), government containment policies (P), and 
behavior of the general population (B) in Switzerland. 
Changes in infection growth influence government poli-
cies and can lead to voluntary behavioral changes of the 
population. Policies are implemented to reduce infections 
and are often associated with far-reaching restrictions 
on citizens’ freedoms, leading to mandatory behavio-
ral changes. Similarly, the behavior of the population 
has an effect on infection growth and, thus, on potential 
policies. As a consequence, all three variables affect each 
other.

A vector autoregressive model (VAR) constitutes a 
natural starting point for such an analysis. The identifi-
cation of structural shocks from the reduced form rep-
resentation using the Cholesky decomposition requires 
a specific ordering of the variables in the system. Given 
such an ordering, the first variable in the system does 
not depend on contemporaneous shocks to any other 

variable while the last variable is contemporaneously 
affected by all shocks. In our setting, such ordering is 
in fact sensible. The spread of the virus in a given week 
depends on the behavior of the population and the strin-
gency of the policies in place that week. Behavior is to 
a high degree influenced by current policies. However, 
since data on infections are available with a considerable 
time lag ( k > 0 ), contemporaneous behavior depends 
only on past infection growth, It−k , where t denotes 
weeks. Determining measures to limit the spread of 
the virus usually requires negotiations between differ-
ent ministries, parties, administrative levels, or at least 
within the Federal Council. Thus, once changes in the 
incidence of infection are observed, a response in the 
form of a policy change will not occur within the same 
week. The publication delay of information on infec-
tion growth further supports this argument. In contrast, 
since the exact impact of public behavior on infections is 
unknown to governments, we assume that they do not 
impose restrictions based on behavioral changes. Thus, 
policy changes do not directly depend on behavior, but 
are only indirectly affected through infection growth. In 
summary, we establish the following structural order:

Additionally, we control for strictly exogenous variables 
regarding weather and holidays and a measure account-
ing for the vaccination progress.

Let yi,t :=
(

Pi,t ,Bi,t , Ii,t
)′
, where i denotes the cantonal 

unit and let xi,t be an r × 1 vector of contemporaneous 
control variables and cantonal fixed effects. The reduced-
form VAR(p) is given by

for i = 1, . . . , n with E
[

ui,tui,t
′] = �u , where ui,t and xi,t 

are uncorrelated for all leads and lags. The Aj are 3× 3 
coefficient matrices and C is a 3× r matrix. Since �u 
may have nonzero off-diagonal elements, the reduced-
form error terms ui,t are likely correlated. Rewriting 
(4) in structural form by multiplying both sides by B0 
yields the structural error terms wi,t = B0ui,t , where 
B−1
0  is the lower triangular Cholesky factor of �u , i.e., 

�u = B−1
0 B−1

0

′ . Since �w = E
[

wtw
′
t

]

= B0�uB
′
0 = I3 , 

where I3 is the 3× 3 identity matrix, the structural errors 

(1)Pt = f
(

Pt−1, . . . , It−k , . . .
)

(2)Bt = f
(

Pt ,Pt−1,Bt−1, . . . , It−k , . . .
)

(3)It = f (Bt ,Pt , It−1,Bt−1,Pt−1, . . .)

(4)

yi,t =
p

∑

j=1

Ajyi,t−j + Cxi,t + ui,t , ui,t
iid∼ N (0,�u)
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wt are uncorrelated. The structural impulse responses 
(IR) are defined by

which can be obtained from the moving-average (MA) 
representation of (4), given by

with �(L) =
∑∞

j=0 �jL
j = A(L)−1,A(L) = I3 − A1L− . . .− ApL

p 
where I3 is the 3× 3 identity matrix. Note that A(L) is 
invertible given stationarity of yi,t (e.g., Kilian and Lütke-
pohl, 2017). The reduced-form impulse responses �j can 
be retrieved recursively as �0 = I3,�j =

∑j
ℓ=1�j−ℓAℓ 

for j = 1, 2, . . . with Aℓ = 0 for ℓ > p (Lütkepohl, 2005). 
Finally, the structural IRs are given by �h = �hB

−1
0  

with �0 = I3 and correspond to one standard deviation 
shocks to the three respective variables. To obtain stand-
ard errors, we use a wild bootstrap method detailed in 
Appendix 2.

3.1 � The effect of individual non‑pharmaceutical 
interventions

The approach detailed above uses a composite measure 
of policy stringency (see Sect.  4), and thus, the method 
does not quantify the effectiveness of specific contain-
ment measures. Given that policy makers usually pass a 
package of different measures, disentangling the effects 
of specific measures is only possible if there is sufficient 
cross-sectional variation as well as variation over time. 
To enable the analysis of stringency sub-categories, we 
rely on a local projection (LP) approach.

Given that yt and xt are stationary, a VAR specification 
with infinitely many lags gives the same impulse response 
functions as a local projection approach (Jordà, 2005; 
Plagborg-Møller and Wolf, 2021) that accounts for the 
given ordering. Let υ̃ℓ,t :=100

υℓ,t
Nj

 be the normalized pol-
icy value for category ℓ ∈ L, and P−L,t the policy strin-
gency index computed with the remaining sub-categories. 
Obtaining LP impulse responses involves regressing the 
endogenous variable of interest on a set of contempora-
neous exogenous control variables and lagged endoge-
nous variables. This is done for each forecast horizon 
separately. To that end, the dependent variable is shifted 
forward corresponding to the forecast horizon 
h = 0, . . . ,H . The local-linear projection equations are 
given by

∂yi,t

∂wi,t−j
,

yi,t =
∞
∑

j=0

�jCxi,t−j +
∞
∑

j=0

�jui,t−j

=
∞
∑

j=0

�jCxi,t−j +
∞
∑

j=0

�jwi,t−j

for each horizon h = 0, . . . ,H . The LP-IRs are defined by 
E
[

It+h

∣

∣ǫ·,t = 1, xt ,Pt ,Bt , . . .
]

− E
[

It+h

∣

∣ǫ·,t = 0, xt ,Pt ,Bt , . . .
]

 
for h ≥ 0 and correspond to one-unit shocks. Thus, for 
sub-category ℓ and remainder index P−L the LP-IRs are 
given by ah

υ̃ℓ,0
 and ahIP,0 , respectively (Plagborg-Møller 

and Wolf, 2021).3 The cumulative IRs can be obtained by 
replacing the left hand side of (5) with 

∑h

h̃=0
I
i,t+h̃

.

4 � Data
We approximate our three endogenous variables P, B, 
and I by the KOF Stringency-Plus Index ( KSI+ ), con-
sumption captured by the number of debit card transac-
tions (NTRX) and new infections (NINF), respectively. 
To ensure stationarity, we use first differences or log-dif-
ferences. In particular, we measure the policy responses 
by the difference in the KOF Stringency-Plus Index 
Pi,t = �KSI+i,t and consumer spending by the weekly 
growth in the number of domestic debit card transac-
tions, i.e., Bi,t = � ln NTRXi,t . Last, infection growth is 
approximated by the logarithm of the effective reproduc-
tive number Ii,t = ln Re,i,t ≈ � ln NINFi,t (see Appen-
dix 3). To facilitate notation, we continue to use P, B and 
I. We first present our indices capturing non-pharmaceu-
tical interventions and subsequently discuss our infection 
and behavior variables as well as all exogenous control 
variables.

4.1 � Policy (P): KOF stringency indices
The KOF Stringency Index ( KSI ) and KOF Stringency-
Plus Index ( KSI+ ) record the stringency of COVID-19 
containment measures in Switzerland. The indices are 
composite measures including different lockdown poli-
cies, such as school and workplace closures, restrictions 
on gatherings, and travel restrictions. The values range 
from 0 (= no measures) to 100 (= full lockdown). Both 
indices build upon the coding framework of the Oxford 
Stringency Index (Hale et al., 2020).

Despite the existence of cantonal differences, the 
Oxford Stringency index for Switzerland is only avail-
able at the national level. Moreover, the (national) Oxford 
Stringency index not only reflects national decisions, but 
also regional measures if they are more stringent than 
the national ones. In order to account for their regional 

(5)

Ii,t+h = γ hxi,t +
p

∑

j=0

∑

ℓ∈L
ahυ̃ℓ,jυ̃ℓ,i,t−j +

p
∑

j=0

ahIP,jP−L,i,t−j

+
p

∑

j=0

ahIB,jBi,t−j +
p

∑

j=1

ahII ,jIt−j + ǫhI ,i,t+h

3  Note that Equation (5) contains B and P contemporaneously such that struc-
tural impulse responses are directly obtained.
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relevance, cantonal measures receive less weight. Thus, 
the index neither necessarily reflects nation-wide restric-
tions, nor allows for a regional interpretation. The KOF 
Stringency Indices close these gaps. For the aggregate 
index, only nation-wide measures are included while the 
cantonal indices also reflect all canton-specific restric-
tions. These indices allow for a comparison between 
cantons as well as between national and cantonal strin-
gency levels. Since cantons are obliged to implement 
the national measures but can introduce stricter meas-
ures if preferred, the national index, in general, consti-
tutes a lower bound for the canton-specific indices. Only 
between December 11, 2020, and January 9, 2021, can-
tons were able to deviate from this rule provided their 
effective reproductive number ( Re ) remained below 1.0 
and the weekly incidence below the Swiss average for at 
least seven days.4

The construction of the KOF Stringency index ( KSI ) 
closely resembles Oxford’s stringency index. In particu-
lar, it is given by the normalized sum of all stringency 
sub-categories, i.e.,

where υj,t is the policy value for sub-indicator j on day t 
and Nj its maximum value. The KOF and Oxford Strin-
gency indices consist of nine sub-indicators, namely 
school closing, workplace closing, cancellation of public 
events, restrictions on gatherings, closure of public trans-
port, stay-at-home requirements, restrictions on internal 
movement, international travel controls and public info 
campaigns. The coding of these sub-indicators is identi-
cal to that of the components of the Oxford Stringency 
Index.5

For the KOF Stringency-Plus Index, we adapt the origi-
nal KOF Stringency Index along two dimensions. First, 
we include facial coverings as an additional sub-indica-
tor. This variable is also collected by the Oxford Covid-
19 Government Response Tracker and used to construct 
additional indices. Second, we transform the sub-indica-
tor related to restrictions on workplaces (c2_workplace-
closing) by adding another category that accounts for the 
reduction in opening hours and capacity.6 Thereby, we 

(6)KSI = 1

9

9
∑

j=1

(

100 · υj,t
Nj

)

,

are able to incorporate restaurant policies more precisely 
than in the original stringency index. Using these ten 
sub-indicators, the formula above changes to:

where υj,t is the policy value and Nj is the maximum pos-
sible value for sub-indicator j.

We collect data for each sub-indicator from a variety of 
sources (see source list in Appendix 1) and calculate the 
KOF Stringency Index and KOF Stringency-Plus Index 
for Switzerland and all of its 26 cantons. Figure 2 shows 
the evolution of both indices over time. On March 16, 
2020, the Swiss Federal Council declared the ‘extraor-
dinary situation’ in terms of the Epidemics Act and 
enforced far-reaching national containment measures. 
As cantons were obliged to implement all national meas-
ures, no cantonal variation existed until mid-June, 2020. 
On June 19, 2020, the ‘extraordinary situation’ ended 
and from then on, federal measures constituted minimal 
restrictions for cantonal governments, which were able to 
impose stronger measures if considered necessary. This 
opportunity to act at the cantonal level was in particular 
used in the French-speaking part of Switzerland. Figure 2 
shows substantial cantonal variation after the end of the 
extraordinary situation, especially during fall and winter.

Figure  3 depicts the sub-categories of the KOF Strin-
gency-Plus Index ( KSI+ ) that vary over time and across 
cantons. The other categories are provided in Fig. 12 in 
Appendix 4. The largest variation is observed for restric-
tions on gatherings (bottom left of Fig. 3). On 1 October 
2020, the federal government withdrew the restrictions 
on gatherings and increased the autonomy of cantonal 
governments to impose restrictions they deem neces-
sary in their localities. Consequently, restrictions on 
gatherings returns to zero. From the end of April, the use 
of facial coverings was phased in over the remainder of 
2020.

The category workplace closing (top left panel of 
Fig.  3) provides another interesting insight. There are 
a number of cantons that closed restaurants and busi-
nesses in October 2020. These cantons are mainly from 
the French-speaking part of Switzerland. In contrast, 
workplace closures in December 2020 were driven by 

(7)KSI
+ = 1

10

10
∑

j=1

(

100 · υj,t
Nj

)

,

4  On December 11, 2020, the Swiss Federal Council decided that cantons 
may extend opening hours to 11pm if their epidemiological situation allows 
for that. Further, a decision on December 18, 2020, enabled cantons with a 
favorable epidemiological situation to relax certain restrictions, such as clo-
sures of restaurants and sports facilities.
5  Detailed information on the coding of the sub-indicators is provided here: 
https://​github.​com/​OxCGRT/​covid-​policy-​track​er/​blob/​master/​docum​
entat​ion/​codeb​ook.​md, last accessed January 11, 2021.

6  The resulting categories are: 0—No measures; 1—Recommend closing 
(or work from home); 2—Reduction in opening hours and/or capacity ; 3—
Require closing (or work from home) for some sectors or categories of work-
ers; 4—Require closing (or work from home) all-but-essential workplaces (e.g., 
grocery stores, doctors).

https://github.com/OxCGRT/covid-policy-tracker/blob/master/documentation/codebook.md
https://github.com/OxCGRT/covid-policy-tracker/blob/master/documentation/codebook.md
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individual German-speaking cantons and later by the 
federal government.

4.2 � Infection growth (I): effective reproduction number
We measure the spread of the virus by the effective 
reproductive number Re based on newly confirmed 
cases. It represents the number of secondary infections 
caused by a previously infected individual. Whenever 

Re is above one, the number of new infections increases 
exponentially, while for Re below one, the spread of the 
virus decreases. We use Re provided by Huisman et  al. 
(2020), who estimate Re for all cantons of Switzerland. To 
that end, they first smooth the series of newly confirmed 
cases by local polynomial regression fitting (LOESS) to 

Fig. 2  KOF stringency indices for Swiss cantons. The graph depicts the KOF Stringency Index (left) and the KOF Stringency-Plus Index (right). The 
respective index is denoted on the y-axis. Note that cantonal variation only starts at the end of June. The first lockdown was governed by federal 
measures

Fig. 3  Sub-indicators of the KSI+with cantonal variation. The graph shows the sub-indicators of the KOF Stringency-Plus Index that exhibit cantonal 
variation. The respective sub-indicator is denoted on the y-axis. Note that cantonal variation only starts at the end of June. The first lockdown was 
governed by federal measures
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cope with reporting cycles and irregular reporting prac-
tices.7 In a next step, they deploy a deconvolution step 
using suitable delay distributions between transmission 
and reporting to infer the infection incidence.8 Last, 
Huisman et  al. (2020) use the EpiEpstim method devel-
oped by Cori et al. (2013) to estimate Re from the series 
of infection incidence.9

The weekly averages of the cantonal Re s based on con-
firmed cases are shown in the left panel of Fig. 4 and the 
weekly infection incidence in Fig. 1. The weekly infection 
incidence reflects the number of newly confirmed cases 
within that week per 100,000 residents. In 2020, the level 
of daily infections was particularly high from March until 
May and from October onward. The difference between 
these two phases can in part be attributed to limited test-
ing capacities during the first wave of infections com-
pared to the second starting in the fall. Correspondingly, 
during the early months of the pandemic, Re reached val-
ues of above 3 in many cantons, which, combined with 
the high level of daily infections, resulted in far-reaching 
containment measures, subsequently pushing Re below 

one. During the summer, Re mostly fluctuated around 
one and occasionally peaked in some cantons. Due to the 
generally low level of infections, these increases were eas-
ily contained.
Re started rising again in mid-September, triggering 

more stringent policy restrictions. Since October 2020, 
the cantonal reproduction rates appear to have moved 
more in tandem, hovering around 1. The right panel of 
Fig.  4 shows the uncertainty involved in the estimation 
of Re . It reports the mean and standard deviation of the 
highest posterior density range (HPDR) across all can-
tons for Re based on confirmed cases (blue), hospitaliza-
tions (green), and deaths (purple). During the summer, 
when there were few confirmed infections and, thus, even 
fewer hospitalizations and deaths, uncertainty increased 
considerably. We use Re based on confirmed cases, as its 
level of uncertainty appears relatively stable compared to 
the two alternatives.

One advantage of Re as a measure for infection growth 
is its reflection of local transmissions (Huisman et  al., 
2020). Cases that were imported from abroad (but tested 
positive in Switzerland) are neglected to avoid distor-
tions of domestic transmission developments. Only cases 
stemming from infections in Switzerland are included. 
Another benefit of Re , compared to confirmed cases 
growth, is the consideration of the susceptible popula-
tion, which is the fraction of population that is not yet 
immune. Most importantly, using Re as a measure of 
infection growth mitigates possible endogeneity prob-
lems. Changes in infection dynamics most likely affect 
government decisions on containment measures, thus 
affecting the KOF Stringency Indices. Similarly, rising 
infection growth increases the risk of getting infected, 
possibly triggering a voluntary reduction in consumer 
spending and other behavioral changes. Given that 

Fig. 4  Effective reproduction number Re and estimation uncertainty. The effective reproduction number Re (left panel) is estimated by Huisman 
et al. (2020) using the EpiEstim method by Cori et al. (2013). The right panel shows the uncertainty associated with the estimation of Re based on 
confirmed cases, hospitalizations and deaths. The solid (dashed) lines represent the daily mean (standard deviation) of the highest posterior density 
range (HPDR) across cantons

7  In particular, they use first-order polynomials and tricubic weights and, for 
each point in time, a window of 21 days.
8  They extend the method by Goldstein et al. (2009) to handle time vary-
ing delay distributions and missing data by using line list data on the delay 
between the onset of symptoms and a reported case, provided by the Fed-
eral Office of Public Health (FOPH), to estimate time-varying delay distri-
butions between transmission and reporting of cases, hospitalizations, and 
deaths. The delay between transmission and confirmation by a positive test 
result depends on the availability of tests and the time between test and 
test result. Similarly, the delay between hospital transmission and or death 
depends on the health characteristics of the population and hospital capaci-
ties and availability. Hence, the resulting delay distributions reflect char-
acteristics of the Swiss population, its health care system and changes in 
capacities related to testing and tracing.
9  The resulting time series of Re is publicly available: https://​github.​com/​
covid-​19-​Re/​daily​Re-​Data, last accessed on May 26, 2021.

https://github.com/covid-19-Re/dailyRe-Data
https://github.com/covid-19-Re/dailyRe-Data
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cantonal Re is available with a delay of 14 to 17 days, i.e., 
in real time there is quite some uncertainty about current 
reproduction rates, Re effectively affects stringency meas-
ures and mobility with a considerable (publication) delay.

4.3 � Behavior (B): debit card transactions
Containment measures related to non-essential retail 
business closures or restaurant lead to declines in mobil-
ity as well as spending. To measure household spending, 
we use the number of transactions in CHF by Swiss debit 
card owners, provided by SIX BBS AG through Moni-
toring Consumption Switzerland.10 We exclude all ATM 
transactions as they are subject to monthly seasonality. 
Figure 5 displays the daily growth rate (in %) of the num-
ber of Swiss debit card transactions in each canton. In 
mid-March 2020, when the first lockdown was enacted, 
there was a sizable reduction in spending. Similarly, at the 
end of December 2020, with the start of the Christmas 
holidays and the national reintroduction of restaurant 
closures, consumer spending decreased considerably.

Consumption can be seen as a measure for the level 
of social distancing by the population. Less spending 
implies that fewer potentially infected individuals come 
into contact with non-infected ones.11 Changes in the 
number of debit transactions thus represent changes in 
behavior, possibly due to containment measures, but also 
as an individual response to the level of infection growth.

Similarly, changes in behavior can be quantified by 
changes in mobility. On behalf of StatisticsZH, the Swiss 
National COVID-19 Science Task Force, and the KOF 
Swiss Economic Institute, intervista AG publishes daily 

mobility data for a representative sample of the Swiss 
population based on smartphone movement data. We 
use the daily median distance measured in kilometers 
and take weekly averages, see Fig.  6. The reduction in 
mobility starting mid-March, after strict containment 
measures were imposed, is clearly visible. However, the 
decline in mobility was less pronounced in the fall, when 
infection rates started rising and containment measures 
were enacted again.

In our main analysis, we use the number of debit card 
transactions to measure the behavior of the population. 
The underlying data set on debit card transaction data is 
comprehensive in that it includes all transactions con-
ducted in Switzerland, broken down by canton. In con-
trast, the data set on mobility consists of 2500 individuals 
in Switzerland. As a result, the mobility data are not nec-
essarily representative for each canton. Nevertheless, 
we conduct robustness checks using mobility to proxy 
behavior.

4.4 � Other data: control variables
The likelihood of infection depends on the extent of 
social distancing. The number of daily contacts natu-
rally changes when there is a break in daily routines, for 
instance during school or public holidays. For that rea-
son, we build daily indicators reflecting school holidays in 
each canton based on information provided by the Swiss 
Conference of Cantonal Ministers of Education. If all 
schools in a canton are on holiday, the indicator is set to 
one, while for holidays that only affect a part of a canton, 
the indicator is set to 0.5. Additionally, we incorporate a 
dummy variable that reflects cantonal as well as federal 
public holidays. The underlying data were obtained via 
manual web-scraping. To obtain weekly indicators, we 
take averages.

Fig. 5  Number of debit card transactions. The number of debit card transactions reflects the number of transactions in each canton made by Swiss 
debit card holders. The data span January 1, 2020, until April 18, 2021. The weekly growth rate is given in per cent

10  Monitoring Consumption Switzerland is a joint project by the University 
of St. Gallen and the University of Lausanne, see https://​monit​oring​consu​
mption.​com.
11  The data on the number of transactions do not include e-commerce.

https://monitoringconsumption.com
https://monitoringconsumption.com
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Weather conditions could also have an influence on the 
behavior of citizens and the contagiousness of the virus.12 
We rely on the MeteoSwiss reference monitoring network 
SwissMetNet (SMN), provided by the Federal Depart-
ment of Home Affairs (FDHA), to construct weather vari-
ables for each canton. Specifically, we use the maximum 
daily temperature in degree Celsius, daily precipitation 
in millimeters, daily sunshine hours, and daily mean rela-
tive humidity. The SMN consists of approximately 160 
automatic weather monitoring stations. We match each 
SME station with a Swiss municipality and subsequently 
compute population weighted versions of all weather vari-
ables for each canton. The municipal population figures 
reflect the permanent resident population on December 
31, 2019, provided by the Swiss Federal Statistical Office 
(SFSO). This procedure excludes highly elevated moun-
tain stations and ensures that the cantonal weather vari-
ables reflect the weather in populous regions. For the 
cantons Appenzell-Innerrhoden (AI), Appenzell-Ausser-
rhoden (AR), Basel-Stadt (BS), and Nidwalden (NW), no 
station matches were found. Taking their location into 
account, we approximate AI and AR by St. Gallen (SG), BS 
by Basel-Landschaft (BL), and NW by Obwalden (OW). 
Finally, we produce weekly averages for all variables. Sum-
mary Statistics of all variables are provided in Table 1.

Finally, we want to account for progress in vaccina-
tion rates during the period under investigation. The first 
dose was administered on December 23, 2020, and due 
to availability and administrative constraints, the vac-
cination campaign in Switzerland prioritizes the elderly 
population and those that are in close contact with them 
until May 2021. Even though the vaccination roll-out was 
mainly driven by supply-side constraints in the begin-
ning, the actual cantonal vaccination progress might be 
endogenous. To circumvent this problem, we interact the 
nationwide vaccination progress with the cantonal share 
of the population of age 65 and older. For the vaccination 
progress, we consider both the newly partially and newly 
fully vaccinated. These two interaction terms capture 
cantonal heterogeneity, are not endogenous to changes 
in infection rates and the average correlation to the can-
tonal vaccination progress is large with 0.82 (0.87) for the 
partially (fully) vaccinated during our estimation period.

5 � Results
All models are estimated using ordinary least-squares 
(OLS) with weekly data and four lags ( p = 4).13 Regard-
ing the information delay of the effective reproductive 
number Re , we assume k = 3 , i.e., there is no effect of 
changes in infection growth for two weeks, which is in 
accordance with the publication lag of 14–17 days. Note 
that the underlying variables for B and I enter the model 

Fig. 6  Mobility. Mobility is measured as the median distance in kilometers travelled by a sample of tracked cell phone users. The upper and lower 
parts show box plots grouped at the canton level and across cantons at the weekly level, respectively. National figures are shown in red. The data 
span January 1, 2020, until April 18, 2021

13  The results are robust to different lag specifications. Given the publication 
delay, we have experimented with lags p ≥ 3.

12  Some hypothesize that COVID-19 contagiousness is promoted by high lev-
els of particulate matter and thereby weather conditions. See, e.g., Zhu et al. 
(2020), Fattorini and Regoli (2020), Zoran et  al. (2020), Li et  al. (2021), Wu 
et al. (2020).
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in log differences while the one for P and all weather-
related variables enter in first differences. Our estimation 
sample covers Phases 3 and 4 which amounts to T = 29 . 
We exclude Phases 1 and 2 for four reasons. First, the 
effective reproductive number Re only became available 
for all cantons by the end of March, which given our 
lag structure eliminates the most important part of this 
phase. Second, since the first wave constitutes an unex-
pected shock, it is potentially quite different and less 
relevant for the future from a policy perspective. Third, 
during Phase 2, the incidence level was very low or even 
zero in some cantons, which entails high estimation 
uncertainty of the reproductive number Re (see Fig.  4). 
Lastly, the low level of incidence during Phase 2 likely 
suppresses the reaction of policy and behavior to changes 
in infection growth. In contrast, all through Phases 3 and 
4, the 14-day incidence was close to but most of the time 
far above the critical value of 60, as specified by the Fed-
eral Office of Public Health FOPH.

In what follows, we focus on the analysis of cumulative 
impulse response (IR) functions. In contrast to regular 
IRs, which show the response of the involved variables 
as they enter the model, i.e., in log-differences or first 

differences, the cumulative IRs provide the reaction of 
the underlying variables in (log-) levels. For instance, 
the cumulative IR at horizon h of infection growth 
I = � ln Re to a shock to policy P = � KSI+ shows the 
change between ln NINFt+h and ln NINFt−1 , which 
corresponds to the h-week growth rate of the num-
ber of new infections (NINF), see Appendix  3. Hence, 
100 ·

(

exp
{

s · IRcum
h

}

− 1
)

 percentage points are the 
response of the level of new infections, where s is the size 
of the policy shock and IRcum

h  the cumulative IR at hori-
zon h to a unit shock.14

Table 1  Summary statistics

The sample includes weekly data from September 28, 2020, until April 18, 2021, for each of the 26 cantons, amounting to N = 754 weeks. The stringency sub-
categories are normalized by their respective maximum value and multiplied with 100. The infection incidence reflects the number of confirmed cases per 100,000 
residents during the respective week. � denotes the first difference operator and ln the natural logarithm

Mean Sd Min. 1st Qu. Median 3rd Qu. Max.

� KOF Stringency-Plus Index 0.917 3.550 − 10.833 0 0 1.190 13.333

� ln Number of debit card transactions 0.001 0.100 − 0.493 − 0.043 0.005 0.058 0.312

ln effective reproductive number 0.027 0.213 − 0.573 − 0.100 0.007 0.110 0.974

� median distance (in km) − 0.168 4.910 − 33.296 − 1.975 − 0.105 1.855 33.119

Public holiday 0.031 0.077 0 0 0 0 0.286

School holiday 0.279 0.401 0 0 0 0.500 1

� maximum temperature (in °C) − 0.297 4.566 − 12.283 − 3.471 − 0.773 2.506 15.047

� precipitation (in mm) − 0.203 4.343 − 27.312 − 2.227 − 0.474 1.556 16.943

� sunshine hours 0.101 2.042 − 5.686 − 1.302 − 0.001 1.428 6.492

� relative humidity (in %) − 0.434 7.517 − 24.086 − 5.528 0.194 4.597 23.155

� school closing (c1) 1.149 6.086 0 0 0 0 33.333

� workplace closing (c2a) 1.724 8.953 − 25 0 0 0 50

� cancel public events (c3) 1.658 6.483 0 0 0 0 50

� restrictions on gatherings (c4) 2.155 11.699 − 17.857 0 0 0 75

� close public transport (c5) 1.724 6.408 0 0 0 0 28.571

� stay at home requirements (c6) 0 8.206 − 33.333 0 0 0 28.571

� domestic travel (c7) 0 12.309 − 50 0 0 0 42.857

� international travel (c8) 0 0 0 0 0 0 0

� public info campaign (h1) 0 0 0 0 0 0 0

� facial coverings (h6) 0.763 4.067 0 0 0 0 25

Incidence 220.927 187.279 7.650 104.431 167.691 291.886 1432.723

�share≥65 · persons fully vaccinated (CH) 1.609 2.017 0 0 0.001 3.575 6.292

�share≥65 · persons partially vaccinated (CH) 1.200 2.339 − 2.925 0 0 2.962 8.132

14  More generally, let y1 = � ln z1 and y2 = �z2 , i.e., z1 enters the 
model in log differences and z2 in first differences (for instance 
y1 = I, z1 = NINF, y2 = P, z2 = KSI+ ). Then, a shock to y1 of size s changes 
ln z1 by s points and z1 by 100 · (exp {s} − 1) = p percent on impact. Let 
IRcumh  be the cumulative impulse response of y2 to a normalized shock 
to y1 after h periods ( s = 1 ). Then, an s point shock to ln z1 or equiva-
lently a p percentage change in z1 changes z2 by s · IRcumh  points. On the 
other hand, a shock to y2 of size s changes z2 by s points on impact. An s 
shock changes ln z1 by s · IRcumh  and z1 by 100 ·

(

exp
{

s · IRcumh

}

− 1
)

= p 
percent. If instead, y2 = � ln z2 , i.e., z2 also enters in log-differ-
ences, an s shock to ln z1 or p percentage point change in z1 leads to a 

100 exp
{

s · IRcumh

}

= 100 · exp
{

ln
(

100+p
100

)

· IRcumh

}

=
(

100+p
100

)IRcumh  percent 
change.
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5.1 � Interplay between infections (I), behavior (B) 
and policy (P)

We estimate model (4) with and without time fixed 
effects.15 As it brings us closer to estimating causal rela-
tionships, our analysis will concentrate on the model that 
contains time fixed effects. When time fixed effects are 
included, all changes relevant for all cantons to the same 
extent are absorbed and the estimated coefficients repre-
sent the effects of the cantonal changes in the involved 
variables. For instance, national policy changes are not 
reflected in the estimated parameters. The same applies 
to co-movement in Re or consumption. Hence, the 
impulse responses of the model with time fixed effects 
correspond to marginal changes in the involved vari-
ables. The time fixed effects do, however, ensure that any 
time-period specific effects not captured by the included 
variables do not distort our analysis. Henceforth, we call 
this model the canton-specific model. In contrast, when 
time fixed effects are excluded, the estimated coefficients 
incorporate all cantonal and other changes. Due to pos-
sibly omitted time-specific effects, the difference between 
the two models might account for more than just changes 
at the national level, such as infection rates and contain-
ment measures in neighboring countries. Nevertheless, 
we include this model in our analysis as it offers a use-
ful comparison to, and validation of, the more restrictive 
model with time fixed effects. Henceforth, we call the 
model without time fixed effects the combined model.

The cumulative impulse responses implied by the esti-
mation of (4) with (red) and without (blue) time fixed 
effects are shown in Fig.  7.16 They are standardized to 
allow for an easy comparison between both models. 
The top panels show the cumulative impulse responses 
to a policy shock, the middle panel those to a behavior 
shock, and the bottom panel those to a shock to infec-
tion growth. The horizontal axes depict the time horizon 
in weeks. The vertical axes show the level response of the 
KSI+ (left), ln NTRX (middle), ln NINF (right).

A one-unit policy shock induces a permanent increase 
in the KSI+ . In the canton-specific model, policy is par-
tially withdrawn in the subsequent weeks. In the com-
bined model, the level of transactions is permanently 
decreased after a policy increase. In contrast, the canton-
specific shocks significantly reduce debit card spend-
ing for only two weeks by about −  1%. This difference 

traces back to the difference in the policy response 
itself: After four weeks, policy is tightened anew, result-
ing in a stronger reduction of approximately −  1.6%. 
The effect of policy on the level of infections appears 
somewhat stronger in the canton-specific model, how-
ever, horizon one and two are the only horizons for 
which the impulse responses significantly differ from 
each other. In the model with time fixed effects, after 
six weeks, a 10-unit increase in the KSI+ leads to a 
exp(−0.041 · 10)− 1 = −34% decrease in the level of 
weekly infections.

A shock in debit card transactions permanently 
increases the level of transactions. By construction, 
behavior only has an impact on policy through infec-
tion growth and, thus, this effect is only significant for 
the combined model. A ten-percentage points shock of 
debit transaction growth leads to a 3.78 · ln (1.1) = 0.36 
unit increase in the KSI+ after six weeks. A positive 
transaction shock also has a positive effect on infection 
growth. A ten percent shock increases the level of new 
weekly infections by 1.10.21 − 1 = 2.0% on impact and by 
1.10.85 − 1 = 8.4% after four weeks. The canton-specific 
effect is generally less pronounced. This indicates dimin-
ishing marginal costs of behavior on infections.

An infection shock induces a permanent level shift in 
the number of new infections. A ten percent increase 
approximately leads to a 1.11.5 − 1 = 15% rise during four 
subsequent weeks. For the combined model, the same 
shock implies a 8.3 · ln (1.1) = 0.79 unit increase in the 
KSI+ after four weeks, while marginal cantonal policy 
only increases by 1.3 · ln (1.1) = 0.12 units. Accordingly, 
and similar to the behavioral reaction to policy, the effect 
of behavior to an infection shock is less pronounced in 
the canton-specific model. This is partly due to the com-
parably small marginal policy reaction. Additionally, the 
cantonal non-pharmaceutical measures could be less 
targeted at limiting virus spread through a reduction in 
overall consumption. The overall decrease in debit card 
spending after a 10 percent increase in the number of 
new infections amounts to about 1.1−0.13 − 1 = −1.2% 
at a horizon of four weeks. The canton-specific effect 
becomes significantly different from week 8 onward.

The estimation results for both models are shown in 
Tables  2 and  3 in Appendix  5. In the combined model 
without time fixed effects, public and school holidays 
and increases in the interaction between the share of 
the population that is 65 years and older ( share≥65 ) with 
the newly fully vaccinated decrease the number of debit 
transactions. Rising temperature and the increases in 
the number of newly partially vaccinated (interacted 
with share≥65 ) lead to an increase. Moreover, holidays 
are positively associated with the introduction of NPIs 
and public holidays with infection growth. Though not 

15  To address the concern of confounding factors with respect to the inci-
dence level, we have included it in xi,t . The impulse responses between the 
endogenous variables remain unchanged.
16  When time fixed effects are included, all policy changes on the federal 
level are absorbed. Since Phase 4 exclusively consists of federal policy meas-
ures, we effectively estimate the marginal effect of policy during Phase 3. 
We have repeated the estimation using only Phase 3. The resulting policy 
effects are in line with our previous findings (see Fig. 13 in Appendix 4).
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statistically significant, increasing temperature, sunshine 
hours and relative humidity are negatively and precipi-
tation positively related to infection growth. When time 
fixed effects are included, all connections between the 
exogenous variables and changes in the KSI+ turn insig-
nificant. The relationships with debit card transactions 
remain largely the same. While the coefficient on relative 
humidity and precipitation is now significant and nega-
tive, that with vaccinations (interacted with share≥65 ) 
turns insignificant. School holidays and infection growth 
are positively related. The newly partially vaccinated per-
sons (interacted with share≥65 ) show a negative relation 
to infection growth.

5.2 � Direct effects
The impulse responses presented in Sect.  5.1 represent 
all direct and indirect effects in the estimated VAR sys-
tem. In this section, we want to disentangle direct from 
indirect effects by artificially implementing zero restric-
tions on the respective indirect transmission channels, 
before recomputing the impulse response functions. To 
be more precise, to compute the direct effect of vari-
able m on variable n, we set aj,nq = 0 for j = 1, . . . , p and 
q = {1, 2, 3} \ {n,m}, where aj,nq is the element in the nth 
row and qth column of the coefficient matrix Aj .

Since the effect of behavior B on policy P is zero by 
construction, the corresponding IR reflects only indi-
rect effects through infection I. Moreover, the IR of I on 
P and B on I do not contain indirect effects through B 
and P. Figure 8 shows the remaining direct effects (red) 

Fig. 7  Cumulative impulse responses of policy P, behavior (consumption) B, and infection growth I. The impulse responses are estimated using the 
recursively ordered VAR(4) in (4) with k = 3 and P = � KSI+ , B = � ln NTRX , and I = ln Re with (red) and without (blue) time fixed effects. The data 
spans September 28, 2020, until April 18, 2021. The shaded areas represent the 95% confidence intervals based on a wild bootstrap procedure with 
5000 repetitions. The horizontal axes depict the time horizon in weeks. The vertical axes show the level response of the KSI+ (left), ln NTRX (middle), 
ln NINF (right)
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alongside their overall effect counterparts (blue). The 
reaction of behavior to an infection shock (left panel) is 
not channeled through changes in the KSI+ broadly until 
week 7. Thereafter, one third to one half of the reduction 
in behavior is due to the policy reaction to the infection 
shock. Hence, the short-term reaction of behavior to ris-
ing infections is voluntary, while in the long run, the pol-
icy response and the reaction thereto accounts for close 
to half of the response. Without the infection channel, a 
policy increase leads to a slightly stronger reduction in 
consumption starting in week 4, since the negative effect 
of policy on infection growth does not push up behavior. 
In contrast, the response of infection growth to a policy 
increase  is weakened when the behavior channel is shut 
off. Approximately one third of the reduction in the level 
of infections is due to a decline in the number of debit 
card transactions.

5.3 � Sub‑categories of policy (P)
The KOF Stringency Indices broadly summarize the 
stringency of non-pharmaceutical containment measures 
by taking several indicators into account. Each indicator 
is equally weighted, and the nuances within the indicators 
are uniformly assigned. Yet, the effectiveness of different 
containment measures is likely to vary with its intensity 
as well as broad category. Analyzing each individual sub-
indicator is not feasible for at least four reasons. First, 
sub-indicators that do not vary across cantons will be 
absorbed by time fixed effects. Second, limited variation 
within a sub-indicator over time reduces the possibility 
to statistically identify any effects. Third, measures were 
partly introduced simultaneously rendering multicollin-
earity problems. Fourth, the effectiveness of one measure 
is likely to depend upon other measures, i.e., the effec-
tiveness of the whole package is likely to be greater than 
the sum of its parts. Nevertheless, to the extent feasible, 

we examine the marginal impact of those sub-indicators 
υℓ,t , ℓ ∈ L , for which sufficient variation exists. To that 
end, we estimate (5) for each forecast horizon to obtain 
Local-Projection Impulse Responses of infection growth 
to different policy shocks.

To validate the LP-IR method and to establish a 
benchmark policy effect, we first estimate the local pro-
jection equation (5) with the regular KSI+ with and 
without time fixed effects. The results are shown in 
the left panel of Fig.  14 in Appendix  4. The impulse 
responses are similar to their VAR counterparts, espe-
cially for the model including time fixed effects. In the 
combined model, the negative effect is only temporary 
and turns insignificant in week three. When time fixed 
effects are included, the drop in infections amounts to 
exp (−0.058 · 2.5)− 1 = −13.5% after four weeks.

All sub-indicators for which there is no time or can-
tonal variation observed in our sample are not analyzed 
individually. These are school closing (c1), close public 
transport (c5), stay at home requirements (c6), domestic 
travel (c7), international travel (c8), and public info cam-
paign (h1) (see Fig. 12 in Appendix 4). The four remain-
ing indicators are shown in Fig.  3. We further exclude 
cancel public events (c3) and facial coverings (h6) since, 
in each case, there is only one increase at the cantonal 
level, roughly happening at about the same time, making 
identification factually impossible. For workplace closing 
(c2a) and restrictions on gatherings (c4), the results with 
(red) and without (blue) time fixed effects are shown in 
Fig. 9. Note that the sub-categories are normalized such 
that they lie between 0 and 100.

An increase in workplace closing (c2a) signifi-
cantly reduces infection growth in both models. 
Four weeks after a 25-unit change in measure c2a 
is enforced, the level of infections drops by roughly 
exp (−0.011 · 25)− 1 = −24% . A 25-unit increase 

Fig. 8  Cumulative impulse responses with indirect channels shut off. The impulse responses are estimated using the recursively ordered VAR(4) in 
(4) with k = 3 and P = � KSI+ , B = � ln NTRX , and I = ln Re with cantonal fixed effects (blue). The red lines represent the cumulative effect when 
the effect through the third variable in the system is artificially shut off. The data span September 28, 2020, until April 18, 2021. The shaded areas 
represent the 95% confidence intervals based on a wild bootstrap procedure with 5000 repetitions. The horizontal axes depict the time horizon in 
weeks. The vertical axes show the level response of ln NTRX (left and middle) and ln NINF (right)
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corresponds to an increase by one category within c2a, 
which in turn corresponds to a 2.5 unit increase in the 
KSI+ . Thus, the effect of the sub-category workplace clos-
ing (c2a) is almost twice as large as an average policy 
increase, implying a 13.5% reduction in the level of infec-
tions. Though estimated with less precision, the effect of 
the sub-category restrictions on gatherings (c4) is similar. 
Looking at the remaining stringency index KSI+−{c2a,c4} 
(right panel in Fig. 14 in Appendix 4) reveals the impor-
tance of measures related to closures of non-essential 
businesses and working from home recommendations 
or requirements. The effect of all other measures turns 
insignificant.

5.4 � Robustness checks
We conduct several robustness checks to validate our 
findings. Most containment measures target behavioral 
changes that in turn lower infection growth. The correla-
tion of our policy variable P = � KSI+ and behavior vari-
able B = � ln NTRX amounts to − 0.41 in the estimation 
sample. To address possible multicollinearity concerns, 
we estimate a second VAR omitting behavior. The results 
do not differ from those with behavior (see Fig. 10).

Consumer spending captures only one specific aspect 
of behavior in response to changes in NPIs and infec-
tions. In a next step, we use the median distance travelled 
in kilometers to approximate behavior. Fewer debit trans-
actions go hand in hand with reduced mobility and, thus, 
the general relations in the VAR should remain valid. 
The results with B = �dist are shown in Fig.  11. The 
effects between policy P and infection growth I remain 
unchanged. The impulse responses involving mobility 
are qualitatively similar, though less precisely estimated. 
A one-unit policy increase decreases the median dis-
tance by 0.21 km to 0.34 km on impact. For both mod-
els, the effect turns insignificant for all other horizons. 

A one-kilometer shock to the median distance traveled 
leads to an exp{0.01} − 1 = 1.0% increase in the level of 
weekly infections after four weeks. The marginal effect 
after four weeks is 0.8%, though not statistically differ-
ent from the combined effect. A 10% increase in weekly 
infections implies a permanent reduction in mobility of 
−4.5 ln(1.1) = −0.43 km after four weeks. Again, the 
marginal cantonal effect is less pronounced but neither 
statistically significant nor different from the combined 
effect.

During Phase 4, two factors emerged that potentially 
distort our findings. First, the progress of the vaccination 
program gradually reduces the susceptible population. 
To address this, our baseline models include interac-
tion terms between the cantonal shares of the popula-
tion being 65 years and older and the number of newly 
partially and fully vaccinated residents (nationwide). 
Second, the so-called UK-mutation B.1.1.7, or Alpha, a 
variant of SARS-CoV-2 that is clearly more transmissi-
ble than the wild-type, became more and more prevalent 
in Switzerland (Davies et  al., 2021). To check whether 
these aspects affect our results, we estimate two alterna-
tives to our baseline model in (4) with time fixed effects 
and without the interaction terms regarding vaccination 
progress. First, we add two cantonal vaccination vari-
ables: the change in the number of fully and partially vac-
cinated residents provided by the Swiss Federal Office of 
Public Health (FOPH). Although there is a risk that vac-
cination progress at the cantonal level is endogenous, 
we believe that this problem is probably not that severe, 
since the distribution of vaccine supplies by the army 
pharmacy in the early stages of the vaccination campaign 
was based on population shares only.17 Second, we end 

Fig. 9  Cumulative impulse responses of infection growth I. The impulse responses are estimated using the local projection specification in (5) with 
P = � KSI+ , B = � ln NTRX , and I = ln Re with (red) and without (blue) time fixed effects. The data span September 28, 2020, until April 18, 2021. The 
shaded areas represent the 95% confidence intervals based on standard errors corrected for serial correlation. The horizontal axes depict the time 
horizon in weeks. The vertical axes show the level response of the respective KSI+ subcategory

17  For four cantons (AG, OW, SG, VS), we use averages of the remaining can-
tons as no data are available.
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our estimation window on January 17, when neither vac-
cination campaign nor the prevalence of variant B.1.1.7 
(Alpha) were well-advanced. The results are shown in 
Fig. 15 in Appendix 4. None of the model specifications 
changes the main results.18

6 � Conclusion
In this paper, we study the interplay between non-
pharmaceutical containment measures, the spread of 
COVID-19, and public behavior in Switzerland. First, 
we construct cantonal indices to proxy the stringency of 
COVID-19 containment measures. In a second step, we 
employ a vector autoregressive (VAR) framework to esti-
mate impulse response functions of three endogenous 
variables: the effective reproductive number, human 
behavior measured by debit card transactions, and con-
tainment measures imposed by governments as quanti-
fied by the KOF Stringency-Plus Index.

Our study focuses on two phases from September 28, 
2020, to April 18, 2021. During the first phase, cantonal 

governments where able to set policies in accordance 
with their regional epidemiological situation. In contrast, 
the second phase is characterized by federal measures 
that apply to all cantons equally. In our analysis, we dif-
ferentiate between overall and canton-specific effects 
by introducing time fixed effects. In the model without 
time fixed effects, federal as well as cantonal changes 
are included, with the disadvantage that any other time-
specific effect not captured by one of our variables might 
introduce a bias in our coefficient estimates. However, 
when adding time fixed effects to the model, federal 
shocks are fully absorbed and the results represent only 
canton-specific effects.

The results indicate that an increase in the stringency 
of non-pharmaceutical measures induces significant and 
sizable reductions in infection growth. A 10-unit increase 
in policy stringency results in a 34% reduction in weekly 
infections after six weeks. Further, a policy shock leads 
to a decrease in debit card transactions. This indicates 
that stricter federal measures actually led to behavioral 

Fig. 10  Cumulative impulse responses of policy P and infection growth I. The impulse responses are estimated using the recursively ordered VAR(4) 
in (4) with k = 3 and B omitted, P = � KSI+ , I = ln Re and with (red) and without (blue) time fixed effects. The data span September 28, 2020, until 
April 18, 2021. The shaded areas represent the 95% confidence intervals based on a wild bootstrap procedure with 5000 repetitions. The horizontal 
axes depict the time horizon in weeks. The vertical axes show the level response of the KSI+ (left) and ln NINF (right)

18  The same applies when conducting both robustness checks for the model 
without time fixed effects.
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changes in the population. Conversely, a rise in infec-
tion growth induces policy reactions in form of stricter 
containment measures by federal and cantonal govern-
ments. Similar to the policy shocks, debit card transac-
tions decrease in response to an infection shock. In fact, 
behavioral changes are voluntary in the short term while 
half of the long-run changes are attributed to stricter pol-
icies. In line with Hacıoğlu-Hoke et al. (2021) and Gupta 
et al. (2020), the drop in consumer spending and mobility 
precedes the introduction of new policy measures. When 
considering different measures individually, we find that 
workplace and business closings as well as restrictions 
on gatherings are particularly effective in containing the 
spread of COVID-19.

Our analysis has relevant policy implications. First, 
we show that non-pharmaceutical containment meas-
ures helped combat the COVID-19 pandemic. Hence, 
implementing restrictions can significantly reduce the 
spread of a viral epidemic. Second, voluntary behavioral 
adaptations played a non-negligible role in reducing the 
spread on top of mandatory restrictions set by federal 
and cantonal governments, which amplifies the effects 
of potential policies. Third, closings of workplaces and 
restrictions on gatherings were very effective in con-
taining the spread. This should be taken into account in 
future fights against pandemics.

Fig. 11  Cumulative impulse responses of policy P, behavior (mobility) B, and infection growth I. The impulse responses are estimated using the 
recursively ordered VAR(4) in (4) with k = 3 and P = � KSI+ , B = �dist , and I = ln Re with (red) and without (blue) time fixed effects. The data span 
September 28, 2020, until April 18, 2021. The shaded areas represent the 95% confidence intervals based on a wild bootstrap procedure with 5000 
repetitions. The horizontal axes depict the time horizon in weeks. The vertical axes show the level response of the KSI+ (left), dist (middle) and ln NINF 
(right)
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Appendix 1: Sources for stringency indices
All websites were last accessed: June 29, 2021.

Oxford COVID-19 Government Response Tracker:
https://​github.​com/​OxCGRT/​covid-​policy-​track​er/​

blob/​master/​docum​entat​ion/​codeb​ook.​md (Codebook)
https://​github.​com/​OxCGRT/​covid-​policy-​track​er/​

blob/​master/​docum​entat​ion/​index_​metho​dology.​md 
(Methodology)

Federal Office of Public Health (FOPH) Website for 
national measures:

https://​www.​bag.​admin.​ch/​bag/​de/​home/​krank​heiten/​
ausbr​ueche-​epide​mien-​pande​mien/​aktue​lle-​ausbr​ueche-​
epide​mien/​novel-​cov/​massn​ahmen-​des-​bundes.​html

Cantonal Health Association (GDK) Website for can-
tonal measures:

https://​www.​gdk-​cds.​ch/​de/​praev​ention-​und-​gesun​
dheit​sfoer​derung/​neues-​coron​avirus

State Secretariat for Migration (SEM) for international 
travel:

https://​www.​sem.​admin.​ch/​sem/​de/​home/​sem/​aktue​ll/​
faq-​einre​iseve​rweig​erung.​html

Information on public campaigns:
https://​www.​bag.​admin.​ch/​bag/​de/​home/​das-​bag/​

aktue​ll/​medie​nmitt​eilun​gen.​msg-​id-​78273.​html
https://​de.​wikip​edia.​org/​wiki/​COVID-​19-​Pande​mie_​

in_​der_​Schwe​iz#​Febru​ar_​2020
Information on public transport:
https://​compa​ny.​sbb.​ch/​de/​medien/​medie​nstel​le/​

medie​nmitt​eilun​gen/​detail.​html/​2020/3/​1803-1
https://​news.​sbb.​ch/​artik​el/​95719/​die-​neust​en-​infor​

matio​nen-​zum-​coron​avirus-​2-4-​2020
https://​news.​sbb.​ch/​artik​el/​95750/​coron​avirus-​diese-​

schut​zmass​nahmen-​machen-​reisen-​moegl​ichst-​sicher
Additional information from ETH-Council and the 

Federal Office of Public Health.

Appendix 2: Bootstrap procedure
Let 

(

yi,Xi

)

, i = 1, . . . , n be the original sample, where yi 
is a T × 1 vector and Xi a T × n matrix. Furthermore, let 
β̂ be a T × n matrix with the corresponding coefficient 
estimates and by ǫ̂i we denote the T × 1 residual vectors.

For the wild cluster bootstrap procedure (see, e.g., 
Cameron et  al., 2008), we create B pseudo-samples 
ǫ̂∗i = aiǫ̂i, i = 1, . . . , nǫ̂∗i = aiǫ̂i, i = 1, . . . , n using the 
weights ai = (1−

√
5)

2  with probability (1+
√
5)

(2
√
5)

 and 
ai = (1+

√
5)

2  with probability 1− (1+
√
5)

(2
√
5)

 , as suggested by 
Mammen (1993). The weights ai have zero mean, unit 
variance and E

[

a3i
]

= 1. We then form 
(

y∗i ,Xi

)

 to obtain 
β̂∗ . The resulting sample β̂∗

1 , . . . , β̂
∗
B is then used to form 

statistical inference.

Appendix 3: Interpretation of Re
The effective reproduction number represents the ratio 
between the number of new infections (NINF) on day t 
and the infectious population prior to that:

where ws is the value of the infectivity profile s days after 
infection, 

∑

s ws = 1 , modelled by the serial interval dis-
tribution (Huisman et  al., 2020). For simplicity, assume 
ws = 1{s=τ } , i.e., transmission only takes place exactly τ 
days after infection. Then,

and ln Re describes the τ-day growth rate of the number 
of new infections. This implies that

For h ≥ τ , the estimated IR thus indicate the log 
level effect between the sum of new infections in 
{h− τ + 1, . . . , h} and that in {t − τ , . . . , t − 1} . For 
h < τ , we obtain the log level change between the 
sum of new infections in {t, . . . , t + h} and that in 
{t − τ , . . . , t + h− τ }.

Re(t) =
NINFt

∑t
s=1 NINFt−sws

,

Re(t) =
NINFt

NINFt−τ

h
∑

k=1

ln Re,t+k =
{
∑τ−1

k=0 ln NINFt+h−k −
∑τ−1

k=0 ln NINFt−1−k h ≥ τ ,
∑h

k=0 ln NINFt+h−k −
∑h

k=0 ln NINFt+h−k−τ h < τ .

https://github.com/OxCGRT/covid-policy-tracker/blob/master/documentation/codebook.md
https://github.com/OxCGRT/covid-policy-tracker/blob/master/documentation/codebook.md
https://github.com/OxCGRT/covid-policy-tracker/blob/master/documentation/index_methodology.md
https://github.com/OxCGRT/covid-policy-tracker/blob/master/documentation/index_methodology.md
https://www.bag.admin.ch/bag/de/home/krankheiten/ausbrueche-epidemien-pandemien/aktuelle-ausbrueche-epidemien/novel-cov/massnahmen-des-bundes.html
https://www.bag.admin.ch/bag/de/home/krankheiten/ausbrueche-epidemien-pandemien/aktuelle-ausbrueche-epidemien/novel-cov/massnahmen-des-bundes.html
https://www.bag.admin.ch/bag/de/home/krankheiten/ausbrueche-epidemien-pandemien/aktuelle-ausbrueche-epidemien/novel-cov/massnahmen-des-bundes.html
https://www.gdk-cds.ch/de/praevention-und-gesundheitsfoerderung/neues-coronavirus
https://www.gdk-cds.ch/de/praevention-und-gesundheitsfoerderung/neues-coronavirus
https://www.sem.admin.ch/sem/de/home/sem/aktuell/faq-einreiseverweigerung.html
https://www.sem.admin.ch/sem/de/home/sem/aktuell/faq-einreiseverweigerung.html
https://www.bag.admin.ch/bag/de/home/das-bag/aktuell/medienmitteilungen.msg-id-78273.html
https://www.bag.admin.ch/bag/de/home/das-bag/aktuell/medienmitteilungen.msg-id-78273.html
https://de.wikipedia.org/wiki/COVID-19-Pandemie_in_der_Schweiz#Februar_2020
https://de.wikipedia.org/wiki/COVID-19-Pandemie_in_der_Schweiz#Februar_2020
https://company.sbb.ch/de/medien/medienstelle/medienmitteilungen/detail.html/2020/3/1803-1
https://company.sbb.ch/de/medien/medienstelle/medienmitteilungen/detail.html/2020/3/1803-1
https://news.sbb.ch/artikel/95719/die-neusten-informationen-zum-coronavirus-2-4-2020
https://news.sbb.ch/artikel/95719/die-neusten-informationen-zum-coronavirus-2-4-2020
https://news.sbb.ch/artikel/95750/coronavirus-diese-schutzmassnahmen-machen-reisen-moeglichst-sicher
https://news.sbb.ch/artikel/95750/coronavirus-diese-schutzmassnahmen-machen-reisen-moeglichst-sicher
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Appendix 4
See Figs. 12, 13, 14, 15.

Fig. 12  Sub-categories of the KSI+ without cantonal variation. Graph shows the sub-indicators of the KOF Stringency-Plus Index that exhibit 
no cantonal variation. The respective sub-indicator is denoted on the y-axis. Note that cantonal variation only starts end of June 2020. The first 
lockdown was governed by federal measures

Fig. 13  Cumulative impulse responses of policy P, behavior (consumption) B, and infection growth I to a unit policy shock (only Phase 3). The 
impulse responses are estimated using the recursively ordered VAR(4) in (4) with k = 3 and P = � KSI+ , B = � ln NTRX , and I = ln Re with time 
fixed effects. The data span September 28, 2020, until January 17, 2021. The shaded areas represent the 95% confidence intervals based on a wild 
bootstrap procedure with 5000 repetitions. The horizontal axes depict the time horizon in weeks. The vertical axes show the level response of the 
KSI+ (left), ln NTRX (middle), ln NINF (right)
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Fig. 14  LP cumulative impulse responses of infection growth I. The impulse responses are estimated using the local projection specification in (5) 
with p = 4 , P = � KSI+ (left), P{c2a,c4} = � KSI +−{c2a,c4} (right), B = � ln NTRX , and I = ln Re with (red) and without (blue) time fixed effects. In the left 
panel, the sub-categories are omitted and in the right panel, the aggregate policy index does exclude Workplace Closings (c2a) and Restrictions on 
Gatherings (c4) since they enter the equation individually. The data span June 22, 2020, until January 17, 2021. The shaded areas represent the 95% 
and 90% confidence intervals based on standard errors corrected for serial correlation. The horizontal axes depict the time horizon in weeks. The 
vertical axes show the level response of ln NINF

Fig. 15  Cumulative impulse responses of infection growth I to policy P for two alternative models. The impulse responses are estimated using the 
recursively ordered VAR(4) in (4) with k = 3 and P = � KSI+ , B = � ln NTRX , and I = ln Re with canton and time fixed effects. The top panel shows 
the cumulative IRs of Infection Growth I to Policy P of the baseline model (blue) and the alternative specification (red). The bottom panel shows 
the difference between the baseline and alternative IRs. The alternative models are characterized by: a two additional control variables concerning 
vaccination, namely the (lagged) change in the number of fully as well as partially vaccinated residents (left), and b a shorter sample length (right). 
Both variants do not include the interaction terms on vaccination progress. The data span from September 28, 2020, until April 18, 2021 for model 
(a), and until January 17, 2021 for model (b). The shaded areas represent 95% confidence intervals based on a wild bootstrap procedure with 5000 
repetitions. The horizontal axes depict the time horizon in weeks. The vertical axes are shown in units of ln NINF
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Appendix 5
See Tables 2 and 3. 

Table 2  VAR(3) with canton fixed effects

The model specification is given in (4) with canton fixed effects and four weeks of lags ( p = 4 ), P = � KSI+ , B = � ln NTRX , and I = ln Re . The sample includes 
weekly data from September 28, 2020 until April 18, 2021 for each of the 26 cantons. � denotes the first difference operator and ln the natural logarithm. * p < 0.1 ; 
**p < 0.05 ; ***p < 0.01

Dependent variable

� KOF Stringency-Plus Index � ln Number of debit transactions ln effective reproductive number

� KOF Stringency-Plus Index (lag 1) − 0.067* 0.0004 − 0.006***

(0.037) (0.001) (0.002)

� KOF Stringency-Plus Index (lag 2) − 0.058* 0.0002 − 0.006***

(0.033) (0.001) (0.001)

� KOF Stringency-Plus Index (lag 3) 0.051 0.001 0.005***

(0.034) (0.001) (0.002)

� KOF Stringency-Plus Index (lag 4) 0.098** − 0.011*** 0.001

(0.041) (0.001) (0.002)

� ln number of debit transactions (lag 1) − 0.262*** 0.109**

(0.041) (0.055)

� ln number of debit transactions (lag 2) − 0.329*** 0.048

(0.040) (0.054)

� ln number of debit transactions (lag 3) 0.009 0.200***

(0.039) (0.053)

� ln number of debit transactions (lag 4) − 0.070* 0.114**

(0.041) (0.055)

ln Effective reproductive number (lag 1) 0.544***

(0.041)

ln effective reproductive number (lag 2) − 0.322***

(0.044)

ln effective reproductive number (lag 3) 1.565* − 0.103*** 0.212***

(0.935) (0.028) (0.045)

ln effective reproductive number (lag 4) 5.969*** − 0.006 − 0.054

(0.808) (0.024) (0.033)

Public holiday 5.806*** − 0.462*** 0.141*

(1.845) (0.056) (0.074)

School holiday 1.395*** − 0.090*** − 0.002

(0.317) (0.010) (0.013)

� maximum temperature (in °C) 0.111*** 0.002* − 0.001

(0.029) (0.001) (0.001)

� precipitation (in mm) − 0.061** − 0.001 0.002

(0.028) (0.001) (0.001)

� sunshine hours 0.025 0.001 − 0.004

(0.072) (0.002) (0.003)

� mean relative humidity (in %) − 0.065*** 0.0005 − 0.001

(0.020) (0.001) (0.001)

� share65 ·  persons fully vaccinated (CH) − 0.629*** 0.004* 0.012***

(0.077) (0.002) (0.003)

� share65 ·  persons partially vaccinated (CH) 0.004 − 0.007*** − 0.004**

(0.045) (0.002) (0.002)

Observations 650 650 650

R2 0.456 0.484 0.496

Adjusted R 2 0.422 0.447 0.459

Residual std. error 2.646 (df = 610) 0.078 (df = 606) 0.104 (df = 604)

F statistic 13.135*** (df = 39; 610) 13.209*** (df = 43; 606) 13.227*** (df = 45; 604)
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Table 3  VAR(3) with canton and time fixed effects

The model specification is given in (4) with canton and time fixed effects and four weeks of lags ( p = 4 ), P = � KSI+ , B = � ln NTRX , and I = ln Re . The sample 
includes weekly data from September 28, 2020 until April 18, 2021 for each of the 26 cantons. � denotes the first difference operator and ln the natural logarithm

*p < 0.1 ; **p < 0.05 ; ***p < 0.01

Dependent variable

� KOF Stringency-Plus Index � ln number of debit transactions ln effective reproductive number

� KOF Stringency-Plus Index (lag 1) 0.030 0.001 − 0.012***

(0.032) (0.003) (0.004)

� KOF Stringency-Plus Index (lag 2) − 0.139*** 0.004 − 0.003

(0.029) (0.002) (0.004)

� KOF Stringency-Plus Index (lag 3) − 0.096*** 0.002 − 0.004

(0.028) (0.002) (0.004)

� KOF Stringency-Plus Index (lag 4) − 0.038 0.0003 − 0.006

(0.028) (0.002) (0.004)

� ln number of debit transactions (lag 1) − 0.170*** 0.132**

(0.037) (0.066)

� ln number of debit transactions (lag 2) − 0.196*** 0.044

(0.036) (0.065)

� ln number of debit transactions (lag 3) − 0.160*** 0.079

(0.036) (0.064)

� ln number of debit transactions (lag 4) − 0.209*** 0.071

(0.036) (0.064)

ln effective reproductive number (lag 1) 0.477***

(0.042)

ln effective reproductive number (lag 2) − 0.368***

(0.046)

ln effective reproductive number (lag 3) 0.665** − 0.083*** 0.229***

(0.284) (0.022) (0.045)

ln effective reproductive number (lag 4) 0.249 − 0.014 − 0.140***

(0.279) (0.022) (0.041)

Public holiday − 0.735 − 0.452*** − 0.151

(0.909) (0.072) (0.127)

School holiday − 0.056 − 0.041*** 0.030*

(0.110) (0.009) (0.015)

� maximum temperature (in °C) − 0.028 − 0.001 − 0.003

(0.030) (0.002) (0.004)

� precipitation (in mm) − 0.007 − 0.006*** − 0.001

(0.013) (0.001) (0.002)

� sunshine hours − 0.026 − 0.002 − 0.003

(0.029) (0.002) (0.004)

� mean relative humidity (in %) − 0.012 − 0.001** − 0.001

(0.007) (0.001) (0.001)

� share65 · persons fully vaccinated (CH) − 0.027 − 0.012 − 0.007

(0.142) (0.011) (0.020)

� share65 · persons partially vaccinated 
(CH)

− 0.049 − 0.017* − 0.036**

(0.117) (0.009) (0.016)

Observations 650 650 650

R2 0.963 0.749 0.572

Adjusted R2 0.959 0.720 0.521

Residual std. error 0.707 (df = 586) 0.056 (df = 582) 0.098 (df = 580)

F statistic 240.025*** (df = 63; 586) 25.869*** (df = 67; 582) 11.214*** (df = 69; 580)
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