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Abstract 

The microdata of surveys are valuable resources for analyzing and modeling relationships between variables of inter-
est. These microdata are often incomplete because of nonresponses in surveys and, if not considered, may lead to 
model misspecification and biased results. Nonresponse variable is usually assumed as a binary variable, and it is used 
to construct a sample selection model in many researches. However, this variable is a multilevel variable related to its 
reasons of occurring. Missing mechanism may differ among the levels of nonresponse, and merging the levels of non-
response may cause bias in the results of the analysis. In this paper, a method is proposed for analyzing survey data 
with respect to reasons for the nonresponse based on sample selection model. Each nonresponse level is considered 
as a selection rule, and classical Heckman model is extended. Simulation studies and an analysis of a real data set from 
an establishment survey are presented to demonstrate the performance and practical usefulness of the proposed 
method.
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1  Introduction
Modeling relationships between variables based on sur-
vey microdata is an essential part of many researches and 
analyses. For example, in survey methodology, deter-
mining a proper approach for some problems, such as 
appropriate strategies for following up nonresponse units 
in the phase of data collection, assessment of measure-
ment errors of main variables among individuals that 
responded and imputation of nonresponse, is usually 
based on the modeling. Another example in economics 
is to model productivity or efficiency in a sector in the 
form of secondary analysis of survey data or to examine 
the relationship between turnover and value added of an 
establishment with some factors related to production 

such as the number of employees based on microdata of 
an establishment survey.

Most surveys suffer from nonresponse and their micro-
data are often incomplete. Nonresponse can increase 
errors of estimates or lead to model misspecification and 
biased results, especially in the case of nonignorable non-
response. Heckman  (1976, 1979) presented a method 
to adjust bias due to the nonresponse in modeling of a 
dependent variable. He considered a model for nonre-
sponse called sample selection model and presented the 
estimates of the parameters and the variances of the esti-
mators by assuming nonresponse variable as binary and 
normal distribution for the errors components of two 
models  (nonresponse and variable of interest models). 
Hanoch  (1976) extended the Heckman approach for 
multivariate dependent variables with one equation for 
nonresponse mechanism and investigated main factors 
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on labor force. Catsiapis and Robinson  (1978, 1982) 
developed the Heckman model by two and then multi-
equations for nonresponse mechanisms and obtained 
estimators for model parameters with independent 
assumptions between the random effects in the equations 
of selection mechanism. Since then, in recent years, some 
developments have been performed on Heckman model. 
Jolani  (2014) worked on longitudinal data in the pres-
ence of nonresponse by presenting an extension of Heck-
man model. He modeled dependent variable with some 
explanatory variables at time t, and for each time before t, 
considered a model as selection model. He obtained the 
estimates of the parameters by assuming nonresponse 
variable as binary and multivariate normal distribu-
tion for error components in the models. Kim and Kim  
(2016) presented a method to analyze data with multi-
variate sample selection model. They assumed elliptically 
contoured  (EC) distribution for the errors in the models 
to obtain robustness against departures from normality.

However, nonresponse can be caused by different 
reasons, and therefore it is in fact a multilevel variable. 
Merging of the levels may lead to model misspecifica-
tions and biased results, especially in cases where the 
mechanism of nonresponse is not the same at different 
levels of nonresponse. In other words, different covari-
ates may be related to different reasons of nonresponse 
or the effects of covariates are of different strengths, or 
go in opposite directions. So, it makes sense to consider 
a different selection model for each level of nonresponse 
in such cases.

Most of the researches about analysis of survey data are 
based on using only one binary variable for nonresponse. 
Also, there are a few works on nonresponse in establish-
ment surveys in recent years. Earp et  al.  (2014, 2018), 
Kirchner and Signorino  (2018), Phipps and Toth  (2012), 
Seiler  (2010)  and Rezaee et al.  (2021) used logistic regres-
sion, classification tree and support vector machine meth-
ods to investigate nonresponse in establishment surveys. 
Paiva and Reiter  (2017) provided a way to follow nonre-
sponse samples in an establishment survey using a mix-
ture pattern model and the assumption of a nonrandom 
nonresponse mechanism. Refusal and noncontact are two 
levels of nonresponse variable and were studied in some 
of the researches about household surveys. Heerwegh 
et  al.  (2007) examined the effect of nonresponse error 
due to refusal and noncontact in a household survey and 
concluded that the error due to noncontact nonresponse 
is 2.56 times greater than the error due to refusal. Durrant 
and Steele  (2009) examined the factors influencing the 
nonresponse by distinguishing refusal from noncontact for 
a set of UK household surveys using a multivariate logis-
tic regression model. Steele and Durrant  (2011) examined 
alternative approaches to multilevel modeling of survey 

noncontact and refusal. They reviewed multinomial and 
sequential models and compare them with a sample selec-
tion model that allows for residual correlation between a 
sample unit’s noncontact and refusal propensities. Vassallo 
et al.  (2015) also examined interviewer’s experience effects 
on nonresponse in a panel survey in the case of multilevel 
nonresponse.

In this paper, we provided a method for analyzing 
incomplete survey data with considering nonresponse as 
a dependent multilevel variable. We extended the classi-
cal Heckman model via increasing the number of selection 
models, caused by the number of nonresponse reasons, 
considering the dependency between nonresponse lev-
els, then we evaluated the performance of the proposed 
method using a simulation study and implemented it on 
an establishment survey with two reasons, refusal and non-
contact for nonresponse. We compared the results of the 
proposed method with those of the univariate selection 
model and investigated the influence of nonrandom nonre-
sponse by a sensitivity study.

This paper is organized as follows. In Sect. 2, Heckman 
model is reviewed, then in Sect. 3, sample selection model 
with multiple selection rules is presented and discussed. In 
Sect. 4, simulation studies are given, and in Sect. 5, the pro-
posed method is implemented on an establishment survey 
microdata and the results are compared with those of using 
univariate selection model. Also, the influence of nonran-
dom nonresponse is investigated using likelihood displace-
ment. In Sect. 6, conclusion and discussion are given.

2 � Univariate selection model
Heckman  (1976, 1979) proposed a method for bias correc-
tion due to nonresponse samples in an ordinary regression 
model. He wanted to estimate the parameters in the model

in the presence of nonresponse on some yi s. He consid-
ered the model

for nonresponse as sample selection model, where 
y∗i  is a latent variable such that if y∗i < 0 then nonre-
sponse occurs for yi and if y∗i ≥ 0 , then yi is observed. 
He assumed bivariate normal distribution for the errors 
(ei,ui) with parameters (0, 0, σ 2

1 , σ
2
2 , ρ) and found esti-

mators of parameters in models  (1) and  (2). In order to 
calculate sample selection bias, Heckman first obtained 
E[yi|xi, y

∗
i ≥ 0] = xiβ + σ12

σ2
�i where �i =

f (zi)
1−F(zi)

 is 
known as inverse Mills ratio, zi = −wiα/σ2 , σ12 = ρσ1σ2 
and f and F are density and distribution functions of the 
standard normal distribution. Therefore, sample selection 

(1)yi = xiβ + ei, i = 1, 2, . . . , n

(2)y∗i = wiα + ui, i = 1, 2, . . . , n
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bias is equal to σ12
σ2

�i . Then, he rewrote the regression 
model as

where vi has mean 0 and variance σ11[(1− ρ2)+ ρ2

(1+ zi�i − �
2
i )] such that 0 ≤ 1+ zi�i − �

2
i ≤ 1 . It is pos-

sible to construct likelihood function and estimate the 
unknown parameters but since this task involved com-
plex calculations, especially at that time, he estimated the 
unknown parameters in two steps. Firstly, he estimated 
α by maximum likelihood estimator using likelihood 
function:

where mi = 1 if y∗i < 0 and mi = 0 if y∗i ≥ 0 , then inverse 
Mills ratio �i was estimated by f (ẑi)

1−F(ẑi)
 and secondly, using 

�̂i instead of �i in model  (3), β , σ12 and σ 2
1  were estimated 

by ordinary least squares regression  (OLS). He adjusted 
the estimator of σ 2

1  in form of 
σ̂1

2 =
∑

i∈S0
(v̂2i − α̂(α̂ẑi − ẑi

2
))/n0 , where S0 is the set of 

individuals who responded yi and v̂i is the estimation of 
residuals that can be obtained from OLS. For identifica-
tion of probit model in  (4), one has to assume σ 2

2 = 1  
(Long 1997, p. 47). Heckman  (1979) presented a method 
for estimation of variance of estimators of parameters 
based on asymptotic distribution of them. Heckman two-
step method is a convenient method for bias correction 
but it has some weakness including assumption of bivari-
ate normal distribution for errors and not using the exact 
likelihood of the observations.

3 � Sample selection with multiple selection rules
Nonresponse occurs for a variety of reasons  (here, lev-
els) in many surveys. Combining these levels into a single 
category and using a selection model to show their rela-
tionship with the main variable of interest may lead to an 
increasing error or model misspecification. Kim and Kim  
(2016) presented a method for multivariate selection 
regression model assuming the errors come from a fam-
ily of elliptical distributions. They used exact likelihood 
to drive estimates using an extended version of the EM 
algorithm and a hierarchical model. In their method, it is 
not possible to generalize the Heckman’s two-step pro-
cedure because of non-normality of the errors and finite 
boundary values of the latent variable for determining 
nonresponse.

3.1 � Model structure
In this section, we increase the number of sample selec-
tion models to be equal to the number of nonresponse 

(3)yi = xiβ +
σ12

σ2
�i + vi

(4)L =

n
∏

i=1

F(zi)
mi [1− F(zi)]

(1−mi)

reasons. We consider the problem to be the study of the 
relationship between Y and X based on a survey data, in 
which a percent of samples are nonresponse for some 
recorded reasons. Let the set of observations in survey be 
S = {(y1,M1, x1,w11, . . . ,w1K), . . . , (yn,Mn, xn ,wn1, . . . ,wnK)} 
where yi is the variable of interest, Mi is the nonresponse 
indicator of yi , i.e., 0 for response and j in the case that yi 
is nonresponse due to reason j, j = 1, . . . ,K  and for 
i = 1, 2, . . . , n and j = 1, 2, . . . ,K  , xi = (xi1, xi2, . . . , xip) , 
wij = (wij1 ,wij2 , . . . ,wijqj

) are the vectors of known 
explanatory variables. We use following models to show 
the relationship between variable of interest  (main 
model), explanatory variables and levels of nonresponses  
(selection models):

with K (K > 1) sample selection models,

where β = (β1,β2, . . . ,βp)
′,αj = (αj1,αj2, . . . ,αjqj )

′, j = 1, . . . ,K  . 
We set y∗ij ≥ 0 ⇐⇒ Mij = 0, y∗ij < 0 ⇐⇒ Mij = j, i = 1, . . . ,

n, j = 1, 2, . . . ,K  and ei and ui = (ui1,ui2, . . . ,uiK ) have 
multivariate normal distribution with mean zero and 

covariance matrix � =

[

σ00 �eu

�ue �uu

]

 where 

�eu = [σ01, σ02, . . . , σ0K ] , �ue = �
′
eu and �uu is the 

K × K  covariance matrix of ui with diagonal elements of 
1 due to identifiability and off-diagonal elements of 
σkl = ρkl . Our main goal is to find estimates of parame-
ters in model  (5) and  (6) such that bias of sample selec-
tions be corrected.

Usually in surveys, reasons of nonresponse have pri-
ority of observing over each other, i.e., it is not possible 
to observe nonresponse reasons all at the same time and 
only one reason is observable and the others may or may 
not. For example, if the nonresponse in a survey is due to 
noncontact and refusal, then for some individuals, only 
noncontact is observable, i.e., refusal will be observable 
if contact with respondent can be done. Therefore, by 
prioritizing the nonresponse reasons, observing Mi = k 
means that nonresponse reasons were not related to 1 
to k − 1 first items of reasons and also we cannot have 
any judgment for reasons k + 1 to K. In this paper, we 
assume that the reasons for the nonresponse are pri-
oritized, therefore Mi = 0 if we have Mij = 0 for all of 
j = 1, . . . ,K  and Mi = j if Mij = 1 and Mit = 0 for all of 
t = 1, . . . , j − 1 . In this case, the value of Mit are unob-
servable for all t = j + 1, . . . ,K .

Reviewing literature, there are other models such as 
sequential, nested, Tobit or double-hurdle models which 
are commonly used. However, these models cannot cover 
the issue of priority well. Sequential or nested model can 

(5)yi = xiβ + ei, i = 1, 2, . . . n,

(6)
y∗ij = wijαj + uij , i = 1, 2, . . . n, and j = 1, 2, . . . ,K ,
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be used to analyze multilevel nonresponse with priorities, 
but using this model, it is not possible to consider corre-
lation between the reasons of the nonresponse. Failure to 
account for this correlation may lead to biased parameter 

estimates. For example, if the reasons of nonresponse are 
noncontact and refusal, the sequential model cannot take 
into account the dependency between the noncontact and 
refusal processes and this dependency will be unexplained 
by the covariates in the model  (Steele & Durrant, 2011). 
In the extended Tobit model, there are one selection model 
for each of dependent variable of interest. The double-
hurdle model can be considered as a special case of the 
method presented in this paper when the number of selec-
tion models is 2, the correlation coefficient between the 
nonresponse reasons is zero and the nonresponse reasons 
have priority over each other. See, Bruno  (2013) and Engel 
and Moffatt  (2014)  for more details.

We set Sj = {i|Mi = j}, j = 0, 1, 2, . . .K  and use 
respondent samples to estimate the parameters in 
models  (5) and  (6). Since samples are respondent if 

the corresponding latent variables are nonnegative, 
we should obtain E(yi|xi, y

∗
i1 ≥ 0, . . . , y∗iK ≥ 0) and 

Var(yi|xi, y
∗
i1 ≥ 0, . . . , y∗iK ≥ 0) . McGill  (1992) investigated 

the moment generating function of truncated normal dis-
tribution. Based on his work and Jolani  (2014), we have:

In Eq.  (7),

(7)E(yi|xi, y
∗
i1 ≥ 0, . . . , y∗iK ≥ 0) = xiβ +

K
∑

j=1

σ0j�ij

(8)
Var(yi|xi, y

∗
i1 ≥ 0, . . . , y∗iK ≥ 0) = σ00 + �euHi�ue.

�ij =
φ1(wijαj)�

∗
K−1

(wijαj)

�K (wi1α1, . . . ,wiKαK )

where φ1(wijαj) is the density function of the univari-
ate standard normal distribution evaluated at wijαj , 
�K (wi1α1, . . . ,wiKαK ) is the cumulative distribution 
function  (cdf ) of a K-variates normal distribution with 
mean zero and covariance matrix �uu in the form of:

�∗
K−1

(wijαj) ≡ 1 for K = 1 and

where φk−1(ui(j)|uij = wijαj;�uu.j) is the conditional 
density function of a K − 1 variates normal distribution 
evaluated at the ui(j)  ( all ui s without the j-th variable) 
given uij and 

∫ wi(j)α(j)
−∞ φK−1(ui(j)|uij = wijαj;�uu.j)dui(j) is 

the K − 1 integral of φK−1(ui(j)|uij = wijαj;�uu.j) on all 
of uit , t = 1, . . . ,K , t �= j.

In equation  (8), Hi is the K × K  matrix with diagonal 
elements of hjj = −wijαj�ij − �

2
ij and off-diagonal elements 

of hkl = �
∗
i,kl − �ik�il where

and φ2(wikαk ,wilαl;�
kl
uu) is the density function of the 

standard bivariate normal distribution evaluated at wikαk 
and wilαl , �kl

uu is the covariance matrix of uk and ul , 
�∗

K−2
(wikαk ,wilαl) ≡ 1 , �kl

uu = �uu for K = 2 and

where φK−2(ui(k),ui(l)|uik = wikαk ,uil = wilαl;�uu.kl) 
is the conditional density function of a K − 2 variates 
normal distribution evaluated at the ui(kl)  ( all ui s with-
out the k-th and the l-th variable ) given uik and uil and 
∫ wi(kl)α(kl)
−∞ φK−2(ui(kl)|uik = wikαk ,uil = wilαl;�uu.kl)dui(kl) 

is the K − 2 integral of φK−2(ui(k),ui(l)|uik = wikαk ,

uil = wilαl;�uu.kl) on all of uit , t = 1, . . . ,K , t �= k , l . 
Also in equation 8, σ00 + �euHi�ue should be positive.

The model 5 can be rewritten as follows:

where vi is the random error with E(vi) = 0 and 
Var(vi) = Var(yi) for all i = 1, 2, . . . , n.

�K (wi1α1, . . . ,wiKαK ) =

∫ wi1α1

−∞

. . .

∫ wiKαK

−∞

φK (ui1, . . .uiK ;�uu)dui1 . . . duiK ,

�∗
K−1(wijαj) =

∫ wi(j)α(j)

−∞

φk−1(ui(j)|uij = wijαj;�uu.j)dui(j), K > 1

�
∗
i,kl =

φ2(wikαk ,wilαl;�
kl
uu)�

∗
K−2

(wikαk ,wilαl)

�K (wi1α1, . . . ,wiKαK )

�∗
K−2(wikαk ,wilαl) =

∫

wi(kl)α(kl)

−∞

φK−2(ui(kl)|uik = wikαk ,uil = wilαl;�uu.kl)dui(kl), K > 2

(9)yi = xiβ +

K
∑

j=1

�ijσ0j + vi
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3.2 � Two‑step estimation
Now, it is possible to apply Heckman’s two-step method. 
The likelihood function in the firs step with priority of 
nonresponse reasons is in the form of:

�i1 , �i2, . . . , �iK  and �uu can be estimated by maximum 
likelihood estimation method. With substitution of the 
value of �̂ij in equation  (9), β and σ0j can be estimated 
by OLS. Var(Yi|xi,Y ∗

i1 > 0, . . . ,Y ∗
iK > 0) has heterosce-

dasticity and the estimate of σ00 should be adjusted. Since 
Var(v2i ) = E(v2i ) , it is expected that �n0

i=1
v̂i
2
/n0 be equal 

to σ00 + �euHi�ue and therefore we can adjust the esti-
mator of σ00 in form of:

3.2.1 � Estimation of standard errors of the estimators
We can consider model  (9) as follows to find the stand-
ard errors of the estimators of parameters:

where G = [X, �̂] , X = [x′1, . . . , x
′
n]

′ , �̂ = [�̂′1, �̂
′
2, . . . , �̂

′
n] , 

�̂i = (�̂i1, . . . , �̂iK ), i = 1, 2, . . . , n , β∗ = [β ′,�ue]
′ and 

L(α1,α2, . . . ,αK ,�uu|M1,M2, . . . ,MK )

=
∏

i∈S0

�K (wi1α1, . . .wiKαK )
∏

i∈S1

�1(−wi1α1)
∏

i∈S2

P(ui1 ≥ −wi1α1,ui2 < −wi2α1)

. . .
∏

i∈SK−1

P(ui1 ≥ −wi1α1, . . . ,ui(K−2) ≥ −wi(K−2)αK−2,ui(K−1) < −wi(K−1)α(K−1))

∏

i∈SK

P(ui1 ≥ −wi1α1, . . . ,ui(K−1) ≥ −wi(K−1)αK−1,uiK < −wiKαK )

n0 ˆσ00 =
∑

i∈n0

v̂2i −
∑

i∈n0

ˆ�euĤi�̂ue.

(10)Y = Gβ∗ + V

β̂∗ = (G′G)−1G′Y  . Based on the work done by Lee et al.  
(1980), the appropriate forms of the standard errors of 
the parameters in the multivariate sample selection can 
be expressed by

�eu is a n× nK  dimension matrix with diago-
nal elements �eu and off-diagonal elements 0, � is a 
nK × nK  dimension matrix with diagonal elements 
wij�ij − �

2
ij , i = 1, . . . , n; j = 1, . . . ,K  and off-diagonal 

elements 0, W is a nK × (
∑K

j=1 qj) diagonal block matrix 
with elements of [w′

i1, . . . ,w
′
iK ]

′and �∗ is the asymptotic 
covariance matrix for the parameters of the first step. The 
standard errors of the parameters in vector β∗ are given 
by the squared root of the diagonal elements of Cov(β̂∗).

3.3 � One‑step estimation
With the development of methods to compute the mul-
tiple integrals and to optimize multivariate functions in 
major statistical software, it is possible to obtain estima-
tors by maximizing the exact likelihood. The exact likeli-
hood, with considering priority of nonresponse reasons, 
is in the form of:

Cov(β̂∗) =σ00(G
′
G)−1 − (G′

G)−1
G
′
�eu

[�−�W�
∗
W

′�]�ueG(G
′
G)−1

(11)

L(β ,α1,α2,αK ,�|Yobs,M1, . . . ,Mn)

=
∏

i∈S0

φ1(
yi − xiβ

σ
1/2
00

)

∫ +∞

−wi1α1

. . .

∫ +∞

−wiKαK

φK (ui1, . . . ,uiK |yi,�uu.0)duiK . . . dui1

∏

i∈S1

�1(wi1α1)
∏

i∈S2

∫ +∞

−wi1α1

∫ −wi2α2

−∞

φ2(ui1,ui2;�uu)dui2dui1

. . .

∏

i∈SK−1

∫ +∞

−wi1α1

. . .

∫ +∞

−wi[K−2]αK−2

∫ −wi[K−1]αK−1

−∞

φK−1(ui1, . . . ,ui[K−1];�uu)dui[K−1] . . . dui1

∏

i∈SK

∫ +∞

−wi1α1

. . .

∫ +∞

−wi[K−1]αK−1

∫ −wiKαK

−∞
φK (ui1, . . . ,uiK ;�uu)duiK . . . dui1
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where Yobs is the vector containing the observed yi s. 
Likelihood function  (11) can effectively evaluated by 
many statistical software such as R.

3.3.1 � Estimation of standard errors of the estimators
In this method, since the estimators are obtained from 
the maximum likelihood estimation method, the variance 
of the estimators can be obtained approximately from the 
inverse of the diagonal components of Fisher informa-
tion. Also, the bootstrap and Jacknife methods may be 
used.

3.3.2 � Test of significancy of the model parameters
In the one-step method, we have exact likelihood, and we 
can test significancy of the model parameters using like-
lihood ratio test as follows: With the exact likelihood in  
(11), it is possible to obtain the estimators with K sample 
selection models, and

where β0,α0
1 , . . . ,α

0
K ,�

0 are the values of the param-
eters under the null hypothesis  ( H0 ), β̂ , α̂1, . . . , α̂K  , �̂ are 
maximum likelihood estimators that are obtained from  
(11) and df is the number of parameters which are not 
assumed to be known in H0.

3.3.3 � Sensitivity analysis
By the specification of the exact likelihood in  (11), it 
is possible to use likelihood displacement approach to 
study the influence of sample selection on estimates 
of the parameters. The method of local influence was 
introduced by Cook  (1986) and developed by others as 
a general tool for assessing the influence of local depar-
tures from the assumptions underlying the models. These 
assumptions, since we desire to study the departure of 
random nonresponse to nonrandom nonresponse, are 
about the elements of � , for example ρ01 = 0 , ρ02 = 0 or 
ρ01 = · · · = ρ0K = 0 may be considered to see the influ-
ence of nonresponse on the results. The likelihood dis-
placement LD (w) is defined as:

where θ̂ = (α̂1, α̂2, β̂ , �̂) and w is the q × 1 perturbation 
vector which shows the departures from the assump-
tions. In the cases where we desire to study the influ-
ence of each reason of nonresponse, e.g., k − th reason, 
k = 1, . . . ,K  , ρ0k = 0 , and w is a scalar around 0 and 
for influence study of a subset of reasons, simultane-
ously, w is a multi-dimensional vector. l(θ̂ )  ( l( ˆθ |w) ) is the 

(12)X2 = −2log
L(β0,α0

1, . . . ,α
0
K ,�

0|Yobs,M1, . . . ,Mn)

L(β̂ , α̂1, . . . , α̂K , �̂|Yobs,M1, . . . ,Mn)
∼ χ2(df )

(13)LD(w) = 2[l(θ̂)− l(θ̂ |w)]

maximum log-likelihood with no perturbation  (pertur-
bation). When w is univariate, influence graph LD (w) 
around zero is a convenient tool for studying the local 
behavior of w. If the graph is strongly curved at zero, 
it means that sample selection is nonrandom and the 
parameters are estimated with high precision, and other-
wise, sample selection is random.

In the cases when w is multi-dimensional, there are 
several curvatures. Cook  (1986) suggests investigating 
the direction in which this influence measure changes 
most rapidly locally. The maximum curvature Cmax of the 
LD (w) surface is given by:

where � is the P × q matrix with elements of 
∂2l(θ |w)
∂θi∂wj

|
θ=θ̂ ,w=0

, i = 1, . . . ,P; j = 1, . . . , q , P is the dimen-
sion of the θ with respect to not having perturbation, θ̂ is 

the estimation of θ under no perturbation, w = 0 denotes 
no perturbation, Q is the P × P matrix with the elements 
of ∂

2l(θ |w)
∂θi∂θj

|
θ=θ̂ ,w=0

, i = 1, . . . ,P; j = 1, . . . ,P and l is the 
eigen vector corresponding to the maximum absolute 
eigen value of the matrix �′Q−1� . It is straightforward to 
apply this approach to multivariate selection model. For 
more details see Billor and Loynes  (1993), Cook  (1986), 
Ganjali and Rezaei  (2005) and Razie et al.  (2013).

4 � Simulation studies
The multivariate sample selection model was exam-
ined in this section by comparing its performance with 
those of the univariate selection model (USM) and the 
regression model with removing nonresponse observa-
tions (complete cases, CC). It is possible to run simula-
tions for any number of selection models, but due to the 
number of different combinations of the nonresponse 
mechanisms at the nonresponse levels, there will be 
many cases and reporting them is out of the aim of this 
paper. For this reason, bivariate selection model (BSM) 
was considered. To compare the results with the USM 
and its relationship with the variable of interest, the same 
explanatory variable was chosen for the selection models 
and the main model. This variable extracted from a uni-
form distribution between 1 and 10. In order to investi-
gate the importance of normality assumption for errors, 
we run simulation in two parts, at first assuming normal-
ity and secondly considering non-normality assumption. 
Moreover, to study the behavior of the proposed method 

(14)C = 2
∣

∣

∣
l′�′Q−1�l

∣

∣

∣
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in different states of the nonresponse mechanisms at the 
different levels of nonresponse, we consider the following 
three cases.

•	 Case 1: The mechanisms of nonresponse at one 
level is random and at another level is nonrandom 
α01 = 4.5 , α11 = −0.6 , α02 = 1 , α12 = 0 , σ01 = −0.5 , 
σ02 = 0 , ρ12 = 0

•	 Case2: Missing not at random  (MNAR) mechanisms 
in the same direction with the variable of interest 
for both levels of nonresponse α01 = 2 , α11 = −0.2 , 

α02 = 5 , α12 = −0.7 , σ01 = −0.5 , σ02 = −0.5 , 
ρ12 = 0.5

•	 Case3: MNAR mechanisms for both levels of nonre-
sponse with different directional with the variable of 
interest α01 = 4.5 , α11 = −0.5 , α02 = −3 , α12 = 1 , 
σ01 = −0.5 , σ02 = 0.5 , ρ12 = −0.5.

We set β0 = −1 , β1 = 1.5 , σ00 = 1 , the number of itera-
tions of 500 and a sample number of 1000 were used to 
generate the data. Other sample sizes such as 200 and 
500 were used, and the results were consistent with the 
results of sample size of 1000. All analysis were done in 

Table 1  Estimates of the parameters with mean squared errors  (in parentheses) with the normality assumption for errors

Estimates are based on the bivariate selection model using two-step and one-step methods, BSM  (two-step) and BSM  (one-step), univariate selection model in one-
step method, USM  (one-step), and complete case analysis  (CC), i.e., data after deleting nonresponse cases.

The sample size is N = 1000.

Case1: Random nonresponse at one level and MNAR at another level of nonresponse,

Case2: MNAR in the same direction with the variable of interest at both levels of nonresponse,

Case3: MNAR at both levels of nonresponse and with different direction with the variable of interest

Case Parameter TRUE BSM  (two-step) BSM  (one-step) USM  (one-step) CC

1 α11 4.5 4.54 (0.20) 4.54 (0.20) 1.95 (2.55) 4.54 (0.19)

α12 − 0.6 − 0.60 (0.03) − 0.60 (0.03) − 0.30 (0.31) − 0.60 (0.03)

α21 1 1.05 (0.25) 1.05 (0.25) – 0.69 (0.34)

α22 0 − 0.02 (0.07) − 0.02 (0.07) 0.10 (0.10)

β1 − 1 − 0.80 (0.22) − 0.86 (0.23) − 0.85 (0.19) − 0.80 (0.23)

β2 1.5 1.44 (0.07) 1.48 (0.05) 1.49 (0.06) 1.43 (0.07)

ρ01 − 0.5 − 0.01 (0.39) − 0.31 (0.28) − 0.35 (0.37) –

ρ02 0 0.00 (0.00) − 0.22 (0.38) – –

ρ12 0 0.05 (0.34) 0.05 (0.37) – –

σ00 1 0.96 (0.06) 1.05 (0.11) 1.10 (0.11) 0.97 (0.06)

2 α11 2 2.07 (0.17) 2.07 (0.17) 2.96 (0.98) 2.07 (0.17)

α12 − 0.2 − 0.21 (0.02) − 0.21 (0.02) − 0.45 (0.25) − 0.21 (0.02)

α21 5 4.96 (0.72) 5.02 (0.64) – 3.92 (1.11)

α22 − 0.7 − 0.69 (0.08) − 0.69 (0.09) – − 0.43 (0.27)

β1 − 1 − 0.96 (0.19) − 1.01 (0.11) − 1.04 (0.11) − 0.83 (0.19)

β2 1.5 1.48 (0.12) 1.49 (0.03) 1.52 (0.03) 1.41 (0.09)

ρ01 − 0.5 − 0.32 (0.49) − 0.26 (0.42) − 0.60 (0.21) –

ρ02 − 0.5 − 0.10 (0.56) − 0.47 (0.30) – –

ρ12 0.5 0.63 (0.29) 0.47 (0.55) – –

σ00 1 1.67 (2.73) 1.01 (0.10) 1.03 (0.09) 0.91 (0.11)

3 α11 4.5 4.68 (0.45) 4.68 (0.45) 3.13 (2.61) 4.68 (0.45)

α12 − 0.5 − 0.52 (0.05) − 0.52 (0.05) − 0.32 (0.33) − 0.52 (0.05)

α21 − 3 − 3.06 (0.26) − 3.04 (0.27) – − 3.06 (0.26)

α22 1 1.03 (0.09) 1.02 (0.09) – 1.03 (0.09)

β0 − 1 − 0.65 (0.60) − 1.00 (0.25) − 0.38 (0.69) − 0.20 (0.81)

β1 1.5 1.43 (0.11) 1.50 (0.06) 1.37 (0.13) 1.36 (0.14)

ρ01 − 0.5 0.12 (0.81) − 0.42 (0.36) 0.63 (1.13) –

ρ02 0.5 0.12 (0.56) 0.63 (0.10) – –

ρ12 − 0.5 − 0.50 (0.10) − 0.51 (0.21) – –

σ00 1 1.01 (0.17) 1.05 (0.08) 0.99 (0.14) 0.91 (0.10)
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R. We applied some packages in R such as “maxLik” and 
“mvtnorm” to do calculations. The corresponding source 
code is available on request.

4.1 � Normality assumption
We assume the stochastic errors come from a three-var-
iate normal distribution with mean zero and covariance 
structure as:

The main model and the selection models are as follows, 
respectively:

The average response rate is about 60% in case 1 and 
about 63% in cases 2 and 3. The average nonresponse 
rates at level 1 in cases 1 to 3 are about 29, 21 and 15 per-
cent, respectively, and at level 2 are around 11, 16 and 
23 percent, respectively. Table 1 shows the results of the 
simulation.

Figure  1 shows a boxplot of the main model’s coef-
ficients estimates to evaluate the performance of the 
methods. It is observed that in all three cases, the CC 

� =





σ00 σ01 σ02
σ01 1 ρ12
σ02 ρ12 1



.

yi = β0 + β1xi + ei,

y∗i1 = α01 + α11wi + ui1,

y∗i2 = α02 + α12wi + ui2.

Fig. 1  Boxplots of the estimated regression coefficients of β0 and β1 with normality assumption from 500 simulation runs. Methods are the bivariate 
selection model using two-step and one-step methods, BSM  (two-step) and BSM  (one-step), respectively, univariate selection model using 
one-step method, USM  (one-step), and complete case analysis  (CC), i.e., data after deleting nonresponse cases

Table 2  Root of the mean squared error  (RMSE) for three cases 
of simulation with the normality assumption

The same as that of Table 1

Method BSM  (two-step) BSM  (one-step) USM  (one-step) CC

Case1: 0.056 0.035 0.099 0.058

Case2: 0.428 0.028 0.017 0.146

Case3: 0.094 0.027 0.160 0.138
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method has biases in estimating β0 and β1 . The method 
of USM in case 1 and 3 has biases in estimating the 
intercept, but in case 2, there is almost no bias. It can 
also be seen in the estimating of β1 that, this method, 
in case 3, gives biased estimate. The BSM has no bias 
in estimating the intercept in cases 2 and 3, and in 
case 1, the bias of this method is much less than that 
of the biases of other methods. To estimate β1 , this 
method gives no bias in cases 1 and 3, and in case 2, its 
bias is slightly higher than that of the USM. The two-
step BSM gives almost bias in all three cases. Consid-
ering the above, it can be stated that the efficiency of 
the one-step BSM is more than that of the univariate, 
and according to the advances it made in maximiza-
tion algorithms and computer programs, the method 

is acceptable. Comparison of the performance of this 
method with that of the USM in cases 1 and 3, espe-
cially 3, has a significant advantage, but in case 2, the 
USM has more advantages.

Table  2 compares the performances of the 
methods based on the root of the mean square 
error  (RMSE) criterion using the regres-
sion model yi = β0 + β1xi, i = 1, . . . , n , where 

RMSE =

√

∑n
i=1(yi−β̂0−β̂1xi)2

n  . Given that all the yi values 
of this criterion are observed, it seems to be a suitable 
criterion for comparing methods. It is observed that 
the value of this criterion for the one-step BSM method 
in cases 1 and 3 is less than those of the other methods. 
The method of USM in case 2 has less RMSE than those 
of the other methods.

Table 3  Estimates of the parameters with mean squared errors  (in parentheses) using the t distribution  (3 degrees of freedom)

The same as that of Table 1

Case Parameter TRUE BSM  (two-step) BSM  (one-step) USM  (one-step) CC

1 α11 4.50 3.23 (1.30) 3.23 (1.30) 2.88 (1.76) 3.23 (1.30)

α12 − 0.60 − 0.43 (0.17) − 0.43 (0.17) − 0.39 (0.22) − 0.43 (0.17)

α21 1.00 0.99 (0.27) 0.98 (0.27) – 0.63 (0.39)

α22 0.00 − 0.04 (0.09) − 0.05 (0.10) – 0.09 (0.09)

β1 − 1.00 − 0.78 (0.24) − 0.81 (0.25) − 0.80 (0.22) − 0.78 (0.24)

β2 1.50 1.42 (0.09) 1.45 (0.06) 1.45 (0.08) 1.42 (0.09)

ρ01 − 0.50 − 0.01 (0.40) − 0.17 (0.28) − 0.80 (0.40) –

ρ02 0.00 0.00 (0.00) − 0.08 (0.42) – –

ρ12 0.00 0.14 (0.43) 0.17 (0.47) – –

σ00 1.00 1.92 (1.00) 2.12 (1.18) 2.09 (1.18) 1.93 (1.01)

2 α11 2.00 1.58 (0.43) 1.52 (0.49) 2.18 (0.18) 1.58 (0.43)

α12 − 0.20 − 0.15 (0.05) − 0.14 (0.06) − 0.34 (0.14) − 0.15 (0.05)

α21 5.00 4.64 (0.49) 4.12 (1.01) – 3.69 (1.31)

α22 − 0.70 − 0.58 (0.13) − 0.54 (0.16) – − 0.40 (0.30)

β1 − 1.00 1.60 (3.50) − 0.88 (0.16) − 1.09 (0.18) − 0.83 (0.22)

β2 1.50 2.81 (1.85) 1.47 (0.03) 1.56 (0.07) 1.38 (0.12)

ρ01 − 0.50 − 0.60 (0.53) − 0.61 (0.36) − 0.67 (0.28) –

ρ02 − 0.50 − 0.15 (0.78) − 0.25 (0.44) – –

ρ12 0.50 − 0.25 (1.02) 0.14 (0.92) – –

σ00 > 5.00 1.67 (> 5.00) 2.43 (1.45) 2.49 (1.50) 2.02 (1.03)

3 α11 4.5 3.01 (1.50) 3.08 (1.42) 1.06 (3.74) 3.00 (1.50)

α12 − 0.5 − 0.33 (0.17) − 0.34 (0.16) − 0.08 (0.46) − 0.33 (0.17)

α21 − 3 − 2.08 (0.95) − 2.17 (0.89) – − 2.00 (1.01)

α22 1 0.71 (0.30) 0.73 (0.28) – 0.69 (0.31)

β0 − 1 − 2.12 (2.88) − 0.38 (0.73) − 0.43 (0.70) 0.06 (1.07)

β1 1.5 1.79 (0.64) 1.39 (0.13) 1.34 (0.16) 1.32 (0.18)

ρ01 − 0.5 − 0.40 (0.50) − 0.15 (0.46) 0.63 (1.14) –

ρ02 0.5 0.28 (0.47) 0.31 (0.38) – –

ρ12 − 0.5 − 0.69 (0.36) − 0.80 (0.45) – –

σ00 > 5.00 1.01 (> 5.00) 1.73 (0.76) 2.01 (1.09) 1.69 (0.71)
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4.2 � Non‑normality assumption
In considering selection models, errors are mostly 
assumed to have a multivariate normal distribution due 
to flexibility in computation and mathematical formula-
tion. However, sensitivity to such an assumption should 
be considered. For this purpose, the multivariate t distri-
bution can be used, because of its heavier tail than that of 
the multivariate normal distribution. A simulation study 
is done in this section to investigate the change of results 
due to using the distribution of t with 3 or more degrees 

of freedom. The simulation results are given in Table  3, 
which show almost close results to those of the normal 
distribution model, except the use of BSM (two-step) 
method in the cases 2 and 3.

Figure 2 shows a boxplot of the main model coefficient 
estimates to evaluate the performance of the methods. 
Although it is observed that all three cases have a bias 
in estimating β0 and β1 , the bias of one-step BSM is less 
than those of others. Because of low efficiency of two-
step BSM, boxplot of using this method was removed 
from Fig. 2.

Table 4 compares the methods by the RMSE criterion. 
As in the normality assumption, the efficiency of the 
BSM (one-step) method is higher than those of other 
methods. The two-step method is not as efficient as USM 
(one-step) and CC methods.

Fig. 2  Boxplots of the estimated regression coefficients of β0 and β1 with t distribution assumption from 500 simulation runs. Methods are the 
bivariate selection model using two-step and one-step methods, BSM  (two-step), BSM  (one-step), respectively, univariate selection model using 
one-step method, USM  (one-step), and complete case analysis  (CC), i.e., data after deleting nonresponse cases

Table 4  Root of mean squared error  (RMSE) in three cases of 
simulation, t distribution with 3 degrees of freedom

The same as Table 1

Method BSM  (two-step) BSM  (one-step) USM  (one-step) CC

Case1: > 5.00 0.123 0.167 0.107

Case2: > 5.00 0.036 0.089 0.351

Case3: 3.079 0.121 0.345 0.227
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Table 5  Explanatory variables used in models for response and nonresponses

Dependent variable Explanatory variables Values

Logarithm of output Logarithm of the number of employees Real number

Status of registration in Bourse 2 categories: 1 for registered and 2 for not registered

Economic activity code  (ISIC) 2 categories: 1 for Manufacture of rubber tyres and tubes plas-
tics products and 2 for Manufacture of other rubber products  
(Isic4_2219)

Noncontact Organization of conducting survey 3 categories: Org. 1, Org. 7 and Org. 11

Status of participation in previous survey 2 categories: 1 for refusal and 2 for noncontact

Having ancillary unit 2 categories: 1 for having and 2 for not

Location of establishment 2 categories: 1 for in industrial zone and 2 for out of industrial zone

Refusal Organization of conducting survey 6 categories: Org. 3, Org. 10, Org. 12, Org. 20, Org. 23 and Org. 25

Status of participation in previous survey 3 categories: 0 for respondent, 1 for refusal and 2 for noncontact

Status of being in sample in previous survey 2 categories: 1 for in sample and 2 for not in sample

Having ancillary unit 2 categories: 1 for having and 2 for not having

Table 6  Estimates of parameters, standard errors  (s.e.) and P values in the bivariate selection model using two-step and one-step 
methods

The sample size is 1236 establishments with 865 respondents, 55 noncontacts and 316 refusals

Reason Parameter Two-step One-step

Estimate s.e. P value Estimate s.e. P value

Noncontact Intercept 1.605 0.127 0.000 1.604 0.127 0.000

Org. 1 − 0.971 0.297 0.000 − 0.970 0.297 0.001

Org. 7 − 1.019 0.199 0.000 − 1.012 0.199 0.000

Org. 11 − 1.892 0.504 0.000 − 1.943 0.509 0.000

Previous status in survey − 0.378 0.186 0.042 − 0.377 0.185 0.041

Not having ancillary unit 0.379 0.176 0.031 0.378 0.179 0.035

Position in industrial zone 0.356 0.140 0.011 0.358 0.141 0.011

Refusal Intercept 1.155 0.082 0.000 1.184 0.080 0.000

Org. 3 0.343 0.207 0.096 0.471 0.208 0.023

Org. 10 0.285 0.162 0.079 0.153 0.166 0.358

Org. 12 0.694 0.289 0.016 0.675 0.284 0.018

Org. 20 − 1.083 0.186 0.000 − 1.076 0.181 0.000

Org. 23 − 0.615 0.112 0.000 − 0.681 0.110 0.000

Org. 25 − 1.072 0.201 0.000 − 1.059 0.195 0.000

Previous status in survey − 1.076 0.152 0.000 − 1.024 0.162 0.000

Previous status in sample − 0.595 0.093 0.000 − 0.567 0.093 0.000

Not having ancillary unit 0.240 0.099 0.015 0.146 0.102 0.151

Correlation between noncontact and refusal − 0.440 0.535 0.411 − 0.657 0.785 0.402

Table 7  Estimates of correlations and P values in the bivariate selection model using two-step and one-step methods

The sample size is 1236 establishments with 865 respondents, 55 noncontacts and 316 refusals. P values are calculated for one-step method

Method Correlation Two-step One-step P value

Bivariate selection models Output value and noncontact 0.069 0.052 0.852

Output value and refusal − 0.576 − 0.411 0.000

Univariate selection model Output value and nonresponse − 0.393 − 0.287 0.000
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5 � Application: analysis of an establishment survey
In this section, we apply the presented method on the 
data of manufacturing with ten employees or more which 
is one of the most important surveys implemented in the 
statistical center of Iran. Its results are used for calcula-
tion of value added in the manufacturing sector in whole 
country and provinces. We use this survey on industry of 
“manufacture of rubber and plastics products” to inves-
tigate the effect of covariates on output variable, i.e., the 
value of all sales of goods and services for each of estab-
lishment. Noncontact and refusal are two reasons of non-
response in this survey, and so we consider two selection 
models.

5.1 � Estimation
Table  5 shows the explanatory variables used in main 
model and selection models. The values of the explana-
tory variables are known for all samples before conduct-
ing the survey. Initially, we use separate probit models 
for refusal and noncontact to determine the explanatory 
variables and exclude variables which are not significant. 
The number of samples is 1236 establishments of which 
865 establishments are respondent, 55 establishments are 
noncontact and 316 establishments are refusal.

In order to obtain the parameters estimates in mod-
els  (5) and  (6), we applied BSM and USM using both 
two-step and one-step approaches and also CC, i.e., only 
using those with observed values. In finding explanatory 

Table 8  Estimates of parameters with standard errors  (in parentheses) in the main model using the bivariate selection model, the 
univariate selection model and the complete cases analysis

The sample size is 1236 establishments with 865 respondents, 55 noncontacts and 316 refusals

Parameter Bivariate selection model Univariate selection model Complete cases

Two-step One-step Two-step One-step

Intercept 21.249 (0.138) 21.156 (0.119) 21.161 (0.129) 21.098 (0.120) 20.940 (0.106)

Logarithm of the number of 
employees

1.126 (0.031) 1.132 (0.031) 1.135 (0.031) 1.139 (0.031) 1.149 (0.030)

Registered in Bourse 0.607 (0.252) 0.611 (0.270) 0.649 (0.268) 0.640 (0.269) 0.632 (0.270)

Isic4_2219 − 0.687 (0.112) − 0.678 (0.112) − 0.691 (0.115) − 0.685 (0.114) − 0.669 (0.113)

Inv. Mills ratio 1 0.074 (0.297) 0.054 (0.086) − 0.407 (0.137) − 0.294 (0.096)

Inv. Mills ratio 2 − 0.619 (0.193) − 0.427 (0.441)

SSE 858.368 855.872 866.945 866.338 876.035

MSE 0.999 0.996 1.008 1.007 1.017

Fig. 3  Sensitivity analysis for the assessing of the influence of the sample selection on deviation from random nonresponse to nonrandom 
nonresponse, noncontact in the left panel and refusal in the right panel
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variables for the USM, variables that did not have signifi-
cant coefficient were excluded from the model. There-
fore, the set of explanatory variables for the USM and the 
BSM are not the same.

Table 6 shows the estimates in using the selection mod-
els provided with standard errors and P values. We use 
likelihood ratio test to obtain P values. The correlation 
coefficient between refusal and noncontact is estimated 
to be negative, and it is equal to − 0.440 and − 0.657 with 
respect to using two-step and one-step methods, but it 
insignificant.

Table  7 shows estimates for the correlations between 
output value and the reasons of nonresponse. It is seen 
that correlation between output value and refusal is 
− 0.576 and − 0.411 in BSM using two-step and one-step 
methods, respectively, which is significant, i.e., the higher 
is the value of the output, the higher is the probability of 
refusal. In addition, correlation between output value and 
noncontact is 0.069 and 0.052 in using two- and one-step 
methods, respectively, which is not significant, that is, 
nonresponse due to noncontact has no association with 
the value of output. This shows that the nonresponse 
mechanism is different among the levels of nonresponse, 
so with considering just one level as USM, the estimates 
will be biased as it is shown in the case 1 of the simula-
tion study. Moreover, in USM, it is seen that the corre-
lation between output value and nonresponse is − 0.393 
and − 0.287 in using two- and one-step methods, respec-
tively, which is significant, but by this model, it is not 
known which levels of nonresponse causes this noning-
norable nonresponse.

Based on the results of Table 8, the main model coef-
ficient estimates in the BSM method have differences 
with those of the USM and CC methods, but their stand-
ard errors are almost the same. These differences are 
due to the distinction between reasons of nonresponse, 
consideration of the BSM, the unbiased property of the 
estimates in the BSM method  (as shown in Sect. 3) and 
consideration of different nonresponse mechanisms 
among different nonresponse levels. The causes of hav-
ing biases of the parameters estimates of using the USM 
and CC methods are the lack of the above-mentioned 
reasons. Moreover, BSM method in two forms  (two-step 
and one-step) has lower MSE than other methods. Also, 
the MSEs using USM method have less value than that of 
the complete case method.

5.2 � Sensitivity analysis
In order to assess the influence of the sample selections 
on the estimates, we consider three cases of deviation 
ρ02 = 0 , ρ01 = 0 and ρ01 = ρ02 = 0 . Figure  3 shows the 
graph of likelihood-displacement for the first two cases. 
These graphs are obtained by the equation given in  (13). 

It can be seen from the left panel of Fig. 3 that the value 
of LD(ρ) is not large and l(.|ρ = 0) is not curved around 
zero, and it can be concluded that the estimates will not 
be affected by noncontact nonresponse. But for refusal 
nonresponse, it can be seen in Fig.  3, the right panel, 
that the value of LD(ρ) is large and so the refusal non-
response has large effect on the estimates of the param-
eters. In order to assess the influence of the third case, we 
apply the equation given in  (14). The maximum curva-
ture  ( Cmax ) in this case is larger than 3, and it can be con-
cluded that estimates are sensitive to the kind of missing 
mechanism. These results are also consistent with the 
assessment of the model by using the Akaike informa-
tion criterion  (AIC). The values of AIC are 4075.748, 
4089.000 and 4087.746, respectively, for case 1 to case 
3. AIC for the model with three correlation coefficient 
is 4077.728 which is slightly more than that of the model 
with no ρ02.

6 � Conclusion and discussion
In this paper, we presented a method for analysis of sur-
vey data with modeling of dependent multilevel nonre-
sponse. In this method, the number of selection models 
is equal to the number of reasons of nonresponse. We 
assumed a multivariate normal distribution for the error 
terms of these models and the response model. The 
parameters can be estimated using a two-step method or 
the one-step  (full likelihood) method. In this approach, 
we assumed that there is only one variable of interest as 
response for modeling. However, this approach can be 
extended to cases where there are more than one variable 
of interest.

In a set of simulation studies, performance of the pro-
posed method in the case of BSM, and that of Heckman 
model were compared. It turns out that the proposed 
method  (in two forms of one-step and two-step) has 
better performance than that of USM in the cases with 
different signs of correlation for dependent variable of 
interest and the nonresponse levels. Moreover, it per-
forms at least as well as the USM when the sign of cor-
relation is the same and one-step method is used. In 
other words, well-performance of the BSM using two-
step method is less than that of the USM using one-step 
method.

The normality assumption for errors is mostly 
assumed due to flexibility in computation and math-
ematical formulation. However, sensitivity to such an 
assumption was considered by using multivariate t dis-
tribution with degrees of freedom of 3 or more, because 
of its heavier tail than that of the multivariate normal 
distribution. The results of simulation show that the 
estimates are biased in both bivariate and univariate 
selection models and CC analysis, but the bias of BSM 
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using one-step method is less than those of others. Of 
course, for higher degrees of freedom than 3, the bias 
will be small because of convergence of the t distribu-
tion to normal distribution. The results show that BSM 
using two-step method without normality assumption 
is not very effective.

The results of using this method on the data of an 
establishment survey show that the MSE obtained 
using the proposed model is less than that of the USM. 
This is consistent with the simulation studies where 
nonresponse mechanism at the noncontact is random 
and at the refusal is nonrandom.

The AIC value of this method is less than that of the 
method without consideration of correlation between 
output value and refusal and noncontact. Noncontact 
reason is not associated with output value significantly 
and therefore, the AIC value of the model without cor-
relation between output value and noncontact is less 
than that of the model. Although it is not possible to 
compare the AIC values between this method and the 
USM because of having different likelihoods in two 
methods, in the univariate case, merging of the reasons 
of nonresponse causes nonsignificancy of the correla-
tion between noncontact and output value, and this 
may lead to loss of information in our inference about 
variable of interest.

We applied the proposed method on an establishment 
survey, but this method can also be used for household 
surveys. In using this method, there must be a sufficient 
number of nonresponse samples at different levels of 
nonresponse so that the estimation of the parameters 
in the selection models can reach acceptable accuracy.
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