Skip to main content

Swiss Energy Strategies under Global Climate Change and Nuclear Policy Uncertainty

Summary

Domestic strategies for the Swiss energy system are likely to be affected by a range of uncertain global challenges, such as natural resource availability and depletion, international climate change policies, and global technology policies. We analyze technological choices for Switzerland under a stringent global climate policy with modest global energy resources; and the possible consequences of different global or regional policies in response to the recent nuclear accident in Fukushima, Japan. We use MERGE, an integrated assessment model, with a division of the world in 10 regions, including Switzerland and Japan. We find that nuclear energy, including light water reactors or more advanced technologies have the potential to play a major role in the future energy system. The consequences of a moratorium on the construction of new nuclear power plants include the need for additional electricity efficiency measures and the integration of a large share of intermittent renewables, raising additional challenges.

References

  • Barreto, Leonardo and Socrates Kypreos (2004), “Endogenizing R&D and Market Experience In The Bottom-Up Energy-Systems ERIS model”, Technovation, 24, pp. 615–629.

    Article  Google Scholar 

  • BFS (2010), “Szenarien zur Bevölkerungsentwicklung der Schweiz 2010–2060”, Tech. rep., Swiss Federal Office of Statistics (BFS), URL http://www.bfs.admin.ch/.

  • Chakravorty, Ujjayant, Bertrand Magne, and Michel Moreaux (2009), “Can Nuclear Power Supply Clean Energy in the long run? A Model with Endogenous Substitution of Resources”, Tech. rep., University of Alberta, Department of Economics.

  • EFD (2008), “Long-Term Sustainability of Public Finances in Switzerland”, Tech. rep., Federal Department of Finance (EFD), URL http://www.efd.admin.ch/dokumentation.

  • IAEA (2011), “Climate change and nuclear power”, Tech. rep., International Atomic Energy Agency.

  • IIASA (2009), “Greenhouse Gas Initiative (GGI) Scenario Database. Version 2.0”, URL http://www.iiasa.ac.at/Research/GGI/DB.

  • Intergovernmental Panel in Climate Change (IPCC) (2007), Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report, Cambridge University Press.

  • Kypreos, Socrates (2005), “Modeling Experience Curves in MERGE (Model for Evaluating Regional and Global Effects)”, Energy, 30, pp. 2721–2737.

    Article  Google Scholar 

  • Kypreos, Socrates and Olivier Bahn (2003), “A MERGE Model with Endogenous Technological Progress”, Environmental Modeling and Assessment, 8, pp. 249–259.

    Article  Google Scholar 

  • Laufer, Fred, Stephan Grötzinger, Marco Peter, and Alain Schmutz (2004), “Ausbaupotential der Wasserkraft”, Tech. rep., Bundesamt für Energie (BFE), URL http://www.bfe.admin.ch/.

  • Lutz, Wolfang, Warren Sanderson, and Sergei Scherbov (2008), “The Coming Acceleration of Global Population Ageing”, Nature, 452, pp. 716–719.

    Article  Google Scholar 

  • Magne, Bertrand, Socrates Kypreos, and Hal Turton (2010), “Technology Options for Low Stabilization Pathways with MERGE”, The Energy Journal. Special Issue 1, 31, pp. 83–108.

  • Manne, Alan and Leonardo Barreto (2004), “Learn-by-Doing and Carbon Dioxide Abatement”, Energy Economics, 26, pp. 621–633.

    Article  Google Scholar 

  • Manne, Alan, Robert Mendelsohn, and Richard Richels (1995), “MERGE: A Model for Evaluating Regional and Global Effects of GHG Reduction Policies”, Energy Policy, 23, pp. 17–34.

    Article  Google Scholar 

  • Marcucci, Adriana, and Hal Turton (2011), “Analyzing Energy Technology Options for Switzerland in the Face of Global Uncertainties: An Overview of the MERGE Model”, NCCR Climate Research Paper 2011/05, Paul Scherrer Institute.

  • OcCC (2007), „OcCC-Empfehlungen zur Schweizerischen Klimapolitik Post 2012“, Tech. rep., The Advisory Body on Climate Change (OcCC), URL http://proclimweb.scnat.ch/portal/ressources/33536.pdf.

  • Pricewaterhousecoopers (2010), “100% Renewable Electricity. A Roadmap to 2050 for Europe and North Africa”, Tech. rep., PriceWaterHouseCoopers.

  • Riahi, Keywan, Arnulf Grübler, and Nebojsa Nakicenovic (2007), “Scenarios of Long-Term Socio-Economic and Environmental Development under Climate Stabilization”, Technological Forecasting and Social Change, 74 , pp. 887–935.

    Article  Google Scholar 

  • SATW (2007), “Roadmap Renewable Energies Switzerland: An Analysis with a View to Harnessing Existing Potentials by 2050”, Tech. rep., Swiss Academy of Engineering and Science (SATW).

  • Seebregts, A., S. Bos, T. Kram, and G. Schaeffer (2000), “Endogenous Learning and Technology Clustering: Analysis with MARKAL Model of the Western European Energy System”, International Journal of Energy Issues, 14, pp. 289–319.

    Article  Google Scholar 

  • Swiss Federal Council (2011), “Federal Council Decides to Gradually Phase Out Nuclear Energy as Part of its New Energy Strategy”, Press release on 25.5.2011, URL http://www.uvek.admin.ch/dokumentation/00474/00492/index.html?lang=en&msg-id=39337.

  • Weidmann, Nicolas, Kannan Ramachandran, and Hal Turton (2012), “Swiss Climate Change and Nuclear Policy: A Comparative Analysis Using an Energy System Approach and a Sectoral Electricity Model”, Swiss Journal of Economics and Statistics, vol. 148(2), pp. 275–316.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriana Marcucci.

Additional information

The support of NCCR Climate and the Swiss National Science Foundation (SNSF) is gratefully acknowledged. The authors would also like to acknowledge previous developments of the MERGE model at PSI by Socrates Kypreos and Bertrand Magne. We are also grateful to Prof. Alexander Wokaun and Dr. Stefan Hirschberg for discussion and suggestions related to the research; and to the two anonymous reviewers who provided very constructive comments and suggestions.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Marcucci, A., Turton, H. Swiss Energy Strategies under Global Climate Change and Nuclear Policy Uncertainty. Swiss J Economics Statistics 148, 317–345 (2012). https://doi.org/10.1007/BF03399369

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03399369

JEL-Classification

  • D58
  • Q41
  • Q48
  • Q54
  • O33

Keywords

  • Energy system
  • climate policy
  • resource depletion
  • efficiency
  • renewables