Skip to main content

Linking Europe: The Role of the Swiss Electricity Transmission Grid until 2050

Summary

The aim of this paper is to evaluate the role of the Swiss electricity transmission system and the planned network extensions in the context of Central European electricity market developments and thereby the Swiss and European energy transitions. In addition, we conduct a sensitivity analysis of delayed grid investments for Swiss and European network projects, respectively. By utilizing a numerical model representation of the Swiss electricity market Swissmod we derive a quantification of the different effects and developments up to 2050. In summary, the Central European market will largely be influenced by the significant increase in intermittent renewable generation. Whereas current power flow patterns are mostly from the Northern markets towards Italy using Switzerland as a transit hub, the large share of solar capacities in 2050 will lead to a high variability on shorter timeframes. While Switzerland will remain a transit hub, the import and export flows will vary with season and daytime. The potential costs and system impacts due to delayed network investments are rather modest in comparison to the overall generation costs but can nevertheless sum to 700 million per year highlighting the importance of network extension to improve cross-regional energy exchange.

References

  1. BAFU (2012), „Einzugsgebietsgliederung Schweiz EZGG-CH“, URL http://www.bafu.admin.ch/ezgg-ch.

    Google Scholar 

  2. Capros, Pantelis (2013), “The PRIMES Model 2013–2014: Detailed Model Description”, URL http://www.e3mlab.ntua.gr/e3mlab/PRIMES%20Manual/The%20PRIMES%20MODEL%202013–2014.pdf.

    Google Scholar 

  3. Consentec (2012a), „Auswirkungen eines verstärkten Ausbaus der dezentralen Erzeugung auf die Schweizer Verteilnetze“, URL http://www.bfe.admin.ch/php/modules/publikationen/stream.php?extlang=de&name=de_519518234.pdf.

    Google Scholar 

  4. Consentec (2012b), „Einfluss verschiedener Stromangebotsvarianten auf das Übertragungsnetz der Schweiz“, URL http://www.bfe.admin.ch/php/modules/publikationen/stream.php?extlang=de&name=de_734620830.pdf.

    Google Scholar 

  5. Egerer, Jonas, Clemens Gerbaulet, Richard Ihlenburg, Friedrich Kunz, Benjamin Reinhard, Christian von Hirschhausen, Alexander Weber, and Jens Weibezahn (2014), “Electricity Sector Data for Policy-Relevant Modeling: Data Documentation and Applications to the German and European Electricity Markets”, URL http://www.diw.de/documents/publikationen/73/diw_01.c.440963.de/diw_datadoc_2014–072.pdf.

    Google Scholar 

  6. Egerer, Jonas, Casimir Lorenz, and Clemens Gerbaulet (2013), “European Electricity Grid Infrastructure Expansion in a 2050 Context”, EEM 2013, 10th International Conference on the European Energy Market 2013.

    Google Scholar 

  7. ENTSO-E (2013), “Yearly Statistics & Adequacy Retrospect 2012”, URL https://www.entsoe.eu/publications/statistics/yearly-statistics-and-adequacy-retrospect/Pages/default.aspx.

    Google Scholar 

  8. ENTSO-E (2014), “Ten-Year Network Development Plan 2014: Full Report: Report to be Improved Based on the Stakeholders' Comments after the Public Consultation”, URL https://www.entsoe.eu/major-projects/ten-year-network-development-plan/tyndp-2014/Pages/default.aspx.

    Google Scholar 

  9. European Commission (2011), “Energy Infrastructure: Priorities for 2020 and beyond — A Blueprint for an Integrated European Energy Network”.

    Google Scholar 

  10. European Commission (2013), “Trends to 2050: EU Energy, Transport and GHG Emissions Reference Scenario 2013”, URL http://ec.europa.eu/transport/media/publications/doc/trends-to-2050-update-2013.pdf.

    Google Scholar 

  11. Fischer, Reinhard, and Friedrich Kiessling (1989), Freileitungen: Planung, Berechnung, Ausführung, 3rd edn., Berlin: Springer.

    Google Scholar 

  12. Füpursch, Michaela, Simeon Hagspiel, Cosima Jägemann, Stephan Nagl, Dietmar Lindenberger, and Eckehard Tröster (2013), “The Role of Grid Extensions in a Cost-Efficient Transformation of the European Electricity System until 2050”, Applied Energy, pp. 642-652, URL http://dx.doi.org/10.1016/j.apenergy.2012.11.050.

    Google Scholar 

  13. Hergert, Rico (2013), ErneuerbareEnergien aus der Landschaft Schweiz: Potentialberechnung unter Berücksichtigung verschiedener landschaftlicher Ausschlusskriterien und künftig nutzbarer Flächen, Ph.D. thesis, Eth Zürich, Zürich.

    Google Scholar 

  14. Hirth, Lion (2013), “The Market Value of Variable Renewables. The Effect of Solar Wind Power Variability on Their Relative Price”, Energy Economics, 38, pp. 218–236, URL http://dx.doi.org/10.1016Zj.eneco.2013.02.004.

    Article  Google Scholar 

  15. Leuthold, Florian U., Hannes Weigt, and Christian von Hirschhausen (2012), “A Large Scale Spatial Optimization Model of the European Electricity Market”, Networks and Spatial Economics: A Journal of Infrastructure Modeling and Computation, 12(1), pp. 75–107.

    Article  Google Scholar 

  16. Mathys, Nicole A., Philippe Thalmann, and Marc Vielle (2012), “Modelling Contributions to the Swiss Energy and Environmental Challenge: Special Issue on Energy Modelling: Introductory Article”, Swiss Journal of Economics and Statistics, 148(2), pp. 97–109.

    Article  Google Scholar 

  17. Meteotest (2012), „Berechnung der Energiepotenziale für Wind- und Sonnenenergie: Energiestrategie 2050: Commissioned by the Federal Office for the Environment (FOEN)“, URL http://www.bafu.admin.ch/landschaft/00522/0l659/index.html?lang=de&download=Nhzlpzeg7t,lnp 6I0ntu042l2z6ln1acy4zn4z2qzpno2yuq2z6gpjcgfir9ggyml62epybg2c_JjKbNoKSn6A—.

    Google Scholar 

  18. Prognos AG (2012), “Die Energieperspektiven für die Schweiz bis 2050: Energienachfrage und Elektrizitätsangebot in der Schweiz 2000–2050”, URL http://www.bfe.admin.ch/php/modules/publikationen/stream.php?extlang=de&name=de_564869151.pdf.

    Google Scholar 

  19. Schlecht, Ingmar, and Hannes Weigt (2014), “Swissmod: A Model of the Swiss Electricity Market”, WWZ Discussion Paper 2014/04, URL http://wwz.unibas.ch/uploads/tx_x4epublication/Swissmod_Schlecht_Weigt_2014.04.pdf.

    Google Scholar 

  20. Schweppe, Fred C., Michael C. Caramanis, Richard D. Tabors, and Roger E. Bohn (1988), Spot Pricing of Electricity, The Kluwer International Series in Engineering and Computer Science. Power Electronics and Power Systems, Boston: Kluwer Academic.

    Google Scholar 

  21. SFOE (2009), „Sachplan Übertragungsleitungen (SÜL)“, URL http://www.bfe.admin.ch/php/modules/publikationen/stream.php?extlang=de&name=de_473856684.pdf.

    Google Scholar 

  22. SFOE (2011), „Kurzbericht Netze“, URL http://www.bfe.admin.ch/php/modules/publikationen/stream.php?extlang=de&name=de_840756874.pdf.

    Google Scholar 

  23. SFOE (2012a), „Energiestrategie 2050: Bericht des Teilprojekts Energienetze und Ausbaukosten“, URL http://www.bfe.admin.ch/php/modules/publikationen/stream.php?extlang=de&name=de_659942037.pdf.

    Google Scholar 

  24. SFOE (2012b), „Erläuternder Bericht zur Energiestrategie 2050“, URL http://www.bfe.admin.ch/themen/00526/00527/index.html?lang=de&dossier_id=05773.

    Google Scholar 

  25. SFOE (2012c), „Statistik der Wasserkraftanlagen (WASTA)“, URL http://www.bfe.admin.ch/geoinformation/05061/05249/index.html?lang=de.

    Google Scholar 

  26. SFOE (2013), „Strategie Stromnetze: Detailkonzept im Rahmen der Energiestrategie 2050“, URL http://www.bfe.admin.ch/php/modules/publikationen/stream.php?extlang=de&name=de_799448366.pdf.

    Google Scholar 

  27. Singh, Antriksh, David Willi, Ndaona Chokani, and Reza S. Abhari (2014), “Optimal Power Flow Analysis of Switzerland's Transmission System for Long-Term Capacity Planning”, Renewable and Sustainable Energy Reviews, pp. 596–607, URL http://dx.doi.org/10.1016/j2rser.2014.03.044.

    Google Scholar 

  28. Swissgrid (2012), „Energiewende: Übertragungsnetz mit Schlüsselrolle“, URL http://www.swissgrid.ch/dam/swissgrid/company/publications/de/Energiewende_de.pdf.

    Google Scholar 

  29. Swissgrid (2014a), „Das Netz der Zukunft“, URL http://www.swissgrid.ch/swissgrid/ de/home/grid/ development.html.

    Google Scholar 

  30. Swissgrid (2014b), „Netzausbau“, URL http://www.swissgrid.ch/swissgrid/de/home/grid/grid_expansion.html.

    Google Scholar 

  31. Wu, Felix, Pravin Varaiya, Pablo Spiller, and Shmuel Oren (1996), “Folk Theorems on Transmission Access: Proofs and Counterexamples”, Journal of Regulatory Economics, 10(1), pp. 5–23, URL http://dx.doi.org/10.1007/Bf00133356.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ingmar Schlecht.

Additional information

We would like to thank Sofia Lemhagen, Moritz Schillinger, Nicolas Weid mann, seminar participants at University of Basel and ETH Zurich and an anonymous referee for helpful comments and suggestions. This research was financially supported by WWZ Forum and is part of the activities of SCCER CREST (Swiss Competence Center for Energy Research), which is financially supported by the Swiss Commission for Technology and Innovation (CTI) under Grant No. KTI.2014.0114.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Schlecht, I., Weigt, H. Linking Europe: The Role of the Swiss Electricity Transmission Grid until 2050. Swiss J Economics Statistics 151, 125–165 (2015). https://doi.org/10.1007/BF03399415

Download citation

  • JEL-Classification: L94

Keywords

  • Switzerland
  • energy transition
  • network extension
  • investment delay