Skip to main content

Table 13 Estimated parameter values from the systems of equations

From: Factor substitution in Swiss manufacturing: empirical evidence using micro panel data

Cost function Linear logit Translog  
Energy-use All Low Medium High All Low Medium High
β kk \(\underset {(1.0271)}{-1.5323}^{}\) \(\underset {(1.40383)}{-\thinspace 0.3261}\) \(\underset {(1.37144)}{-\thinspace 2.8252}^{**}\) \(\underset {(1.89095)}{-\thinspace 1.4632}^{}\) \(\underset {(0.0253)}{-\thinspace 0.0469}^{*}\) \(\underset {(0.04405)}{-\thinspace 0.0146}^{}\) \(\underset {(0.03973)}{-\thinspace 0.0859}^{**}\) \(\underset {(0.04697)}{-\thinspace 0.0325}^{}\)
β kl \(\underset {(0.1451)}{0.0361}^{}\) \(\underset {(0.22205)}{-\thinspace 0.1439}^{}\) \(\underset {(0.24317)}{-\thinspace 0.1153}^{}\) \(\underset {(0.28905)}{ 0.4746}^{*}\) \(\underset {(0.009)}{0.0144}^{}\) \(\underset {(0.01667)}{ 0.0115}^{}\) \(\underset {(0.01671)}{-\thinspace 0.0062}^{}\) \(\underset {(0.02104)}{ 0.0510}^{**}\)
β ke \(\underset {(0.9812)}{-\thinspace 0.1921}^{}\) \(\underset {(1.30739)}{ 2.6823}^{**}\) \(\underset {(1.26284)}{ 0.7123}^{}\) \(\underset {(1.8406)}{-4.1125}^{**}\) \(\underset {(0.0064)}{-\thinspace 0.006}^{}\) \(\underset {(0.00446)}{ 0.0054}^{}\) \(\underset {(0.00428)}{ 0.0005}^{}\) \(\underset {(0.01588)}{-\thinspace 0.0278}^{*}\)
β km \(\underset {(0.3294)}{0.7777}^{**}\) \(\underset {(0.53995)}{ 0.2512}^{}\) \(\underset {(0.4757)}{ 1.4241}^{***}\) \(\underset {(0.76975)}{ 0.7326}^{}\) \(\underset {(0.0310)}{0.0385}^{}\) \(\underset {(0.05161)}{-\thinspace 0.0023}^{}\) \(\underset {(0.04804)}{ 0.0916}^{*}\) \(\underset {(0.06072)}{ 0.0093}^{}\)
β ll \(\underset {(0.2293)}{0.1659}^{}\) \(\underset {(0.34239)}{-\thinspace 0.0876}^{}\) \(\underset {(0.3597)}{ 0.3397}^{}\) \(\underset {(0.46448)}{ 0.2412}^{}\) \(\underset {(0.011)}{0.0129}^{}\) \(\underset {(0.0183)}{-\thinspace 0.0355}^{*}\) \(\underset {(0.01913)}{ 0.0499}^{***}\) \(\underset {(0.01845)}{ 0.0209}^{}\)
β le \(\underset {(0.2302)}{-\thinspace 0.4714}^{**}\) \(\underset {(0.34582)}{-\thinspace 0.3215}^{}\) \(\underset {(0.35269)}{-\thinspace 0.8072}^{**}\) \(\underset {(0.4639)}{ 0.0108}^{}\) \(\underset {(0.0021)}{-0018}^{}\) \(\underset {(0.00096)}{-\thinspace 0.0019}^{*}\) \(\underset {(0.00174)}{-\thinspace 0.0057}^{***}\) \(\underset {(0.00629)}{ 0.0072}^{}\)
β lm \(\underset {(0.1030)}{-\thinspace 0.1507}^{}\) \(\underset {(0.1605)}{ 0.1518}^{}\) \(\underset {(0.16274)}{-\thinspace 0.2123}^{}\) \(\underset {(0.20774)}{-\thinspace 0.5160}^{**}\) \(\underset {(0.0161)}{-\thinspace 0.0253}^{}\) \(\underset {(0.02718)}{ 0.0259}^{}\) \(\underset {(0.02806)}{-\thinspace 0.0380}^{}\) \(\underset {(0.03152)}{-\thinspace 0.0791}^{**}\)
β ee \(\underset {(0.8534)}{1.8319}^{**}\) \(\underset {(1.12522)}{-25.0307}^{***}\) \(\underset {(1.09236)}{ 13.6234}^{***}\) \(\underset {(1.52994)}{-\thinspace 1.8234}^{}\) \(\underset {(0.0054)}{0.0019}^{}\) \(\underset {(0.00268)}{ 0.0001}^{}\) \(\underset {(0.00362)}{ 0.0077}^{**}\) \(\underset {(0.01391)}{-\thinspace 0.0071}^{}\)
β em \(\underset {(0.4231)}{0.0528}^{}\) \(\underset {(0.6342)}{-\thinspace 1.0517}^{*}\) \(\underset {(0.53985)}{-\thinspace 0.7720}^{}\) \(\underset {(0.95967)}{ 2.5192}^{***}\) \(\underset {(0.011)}{0.0059}^{}\) \(\underset {(0.00699)}{-\thinspace 0.0036}^{}\) \(\underset {(0.00775)}{-\thinspace 0.0026}^{}\) \(\underset {(0.02741)}{ 0.0277}^{}\)
β mm \(\underset {(0.5460)}{-\thinspace 0.2741}^{}\) \(\underset {(0.85543)}{-\thinspace 0.2413}^{}\) \(\underset {(0.74858)}{-\thinspace 0.4695}^{}\) \(\underset {(1.2455)}{-\thinspace 0.1279}^{}\) \(\underset {(0.0367)}{-\thinspace 0.0188}^{}\) \(\underset {(0.05867)}{-\thinspace 0.0200}^{}\) \(\underset {(0.05643)}{-\thinspace 0.0511}^{}\) \(\underset {(0.07306)}{ 0.0421}^{}\)
linear trend \(\underset {(0.0026)}{-\thinspace 0.0087}^{***}\)   \(\underset {(0.00536)}{-\thinspace 0.0136}^{**}\) \(\underset {(1e-04)}{-\thinspace 0.0004}^{***}\)   \(\underset {(0.00417)}{-\thinspace 0.0109}^{***}\)   
quadratic trend       \(\underset {(1e-05)}{ 3e-05}^{***}\)   
β Ky \(\underset {(0.0200)}{-\thinspace 0.0912}^{***}\) \(\underset {(0.0407)}{ 0.0010}^{}\) \(\underset {(0.02987)}{-\thinspace 0.1820}^{***}\) \(\underset {(0.03257)}{-\thinspace 0.0660}^{** }\) \(\underset {(0.0019)}{0.0122}^{***}\) \(\underset {(0.00299)}{ 0.0175}^{***}\) \(\underset {(0.00317)}{ 0.0028}^{}\) \(\underset {(0.00334)}{ 0.0182}^{***}\)
β Ly \(\underset {(0.0159)}{-\thinspace 0.3492}^{***}\) \(\underset {(0.03541)}{-\thinspace 0.3025}^{***}\) \(\underset {(0.02483)}{-\thinspace 0.3755}^{***}\) \(\underset {(0.02521)}{-\thinspace 0.3589}^{***}\) \(\underset {(0.0019)}{-\thinspace 0.0610}^{***}\) \(\underset {(0.00382)}{-\thinspace 0.0550}^{***}\) \(\underset {(0.00369)}{-\thinspace 0.0629}^{***}\) \(\underset {(0.00327)}{-\thinspace 0.0635}^{***}\)
β Ey \(\underset {(0.0224)}{-\thinspace 0.2394}^{***}\) \(\underset {(0.04123)}{-\thinspace 0.2746}^{***}\) \(\underset {(0.02563)}{-\thinspace 0.2315}^{***}\) \(\underset {(0.04538)}{-\thinspace 0.2133}^{***}\) \(\underset {(0.0004)}{-\thinspace 0.0004}^{}\) \(\underset {(0.00021)}{-\thinspace 0.001}^{***}\) \(\underset {(0.00027)}{-\thinspace 0.0005}^{*}\) \(\underset {(0.00116)}{ 0.0002}^{}\)
N 7396 2462 2461 2473 7396 2462 2461 2473
  1. Notes: The symbols , , denote significance at the 10, 5, and 1% levels, respectively. Note that the model restriction requires β ji =β ij . Based on our specification choice presented in Table 12, linear and quadratic trends over time have been included for certain subsets. Cluster-robust standard errors using bootstrap with 5000 replications are presented in parentheses